Advances in Neural Information Processing Systems 26 (NIPS 2013)
The papers below appear in Advances in Neural Information Processing Systems 26 edited by C.J.C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K.Q. Weinberger.They are proceedings from the conference, "Neural Information Processing Systems 2013."
- The Randomized Dependence Coefficient David Lopez-Paz, Philipp Hennig, Prof. Bernhard Schölkopf
- Documents as multiple overlapping windows into grids of counts Alessandro Perina, Nebojsa Jojic, Manuele Bicego, Andrzej Truski
- Reciprocally Coupled Local Estimators Implement Bayesian Information Integration Distributively Wen-Hao Zhang, Si Wu
- Latent Maximum Margin Clustering Guang-Tong Zhou, Tian Lan, Arash Vahdat, Greg Mori
- Data-driven Distributionally Robust Polynomial Optimization Martin Mevissen, Emanuele Ragnoli, Jia Yuan Yu
- Transfer Learning in a Transductive Setting Marcus Rohrbach, Sandra Ebert, Bernt Schiele
- Bayesian optimization explains human active search Ali Borji, Laurent Itti
- Provable Subspace Clustering: When LRR meets SSC Yu-Xiang Wang, Huan Xu, Chenlei Leng
- Generalized Random Utility Models with Multiple Types Hossein Azari Soufiani, Hansheng Diao, Zhenyu Lai, David C. Parkes
- Polar Operators for Structured Sparse Estimation Xinhua Zhang, Yao-Liang Yu, Dale Schuurmans
- On Decomposing the Proximal Map Yao-Liang Yu
- Point Based Value Iteration with Optimal Belief Compression for Dec-POMDPs Liam C. MacDermed, Charles Isbell
- PAC-Bayes-Empirical-Bernstein Inequality Ilya O. Tolstikhin, Yevgeny Seldin
- Modeling Clutter Perception using Parametric Proto-object Partitioning Chen-Ping Yu, Wen-Yu Hua, Dimitris Samaras, Greg Zelinsky
- Robust Multimodal Graph Matching: Sparse Coding Meets Graph Matching Marcelo Fiori, Pablo Sprechmann, Joshua Vogelstein, Pablo Muse, Guillermo Sapiro
- Transportability from Multiple Environments with Limited Experiments Elias Bareinboim, Sanghack Lee, Vasant Honavar, Judea Pearl
- More data speeds up training time in learning halfspaces over sparse vectors Amit Daniely, Nati Linial, Shai Shalev-Shwartz
- Causal Inference on Time Series using Restricted Structural Equation Models Jonas Peters, Dominik Janzing, Prof. Bernhard Schölkopf
- Deep Fisher Networks for Large-Scale Image Classification Karen Simonyan, Andrea Vedaldi, Andrew Zisserman
- Sparse Additive Text Models with Low Rank Background Lei Shi
- Variance Reduction for Stochastic Gradient Optimization Chong Wang, Xi Chen, Alexander J. Smola, Eric P. Xing
- Training and Analysing Deep Recurrent Neural Networks Michiel Hermans, Benjamin Schrauwen
- A simple example of Dirichlet process mixture inconsistency for the number of components Jeffrey W. Miller, Matthew T. Harrison
- Variational Policy Search via Trajectory Optimization Sergey Levine, Vladlen Koltun
- Scalable kernels for graphs with continuous attributes Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, Karsten Borgwardt
- Density estimation from unweighted k-nearest neighbor graphs: a roadmap Ulrike Von Luxburg, Morteza Alamgir
- Decision Jungles: Compact and Rich Models for Classification Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John Winn, Antonio Criminisi
- What Are the Invariant Occlusive Components of Image Patches? A Probabilistic Generative Approach Zhenwen Dai, Georgios Exarchakis, Jörg Lücke
- Actor-Critic Algorithms for Risk-Sensitive MDPs Prashanth L.A., Mohammad Ghavamzadeh
- Summary Statistics for Partitionings and Feature Allocations Isik B. Fidaner, Taylan Cemgil
- One-shot learning and big data with n=2 Lee H. Dicker, Dean P. Foster
- Variational Inference for Mahalanobis Distance Metrics in Gaussian Process Regression Michalis Titsias RC AUEB, Miguel Lazaro-Gredilla
- Correlations strike back (again): the case of associative memory retrieval Cristina Savin, Peter Dayan, Mate Lengyel
- Optimal Neural Population Codes for High-dimensional Stimulus Variables Zhuo Wang, Alan A. Stocker, Daniel D. Lee
- Online Variational Approximations to non-Exponential Family Change Point Models: With Application to Radar Tracking Ryan D. Turner, Steven Bottone, Clay J. Stanek
- Accelerating Stochastic Gradient Descent using Predictive Variance Reduction Rie Johnson, Tong Zhang
- Using multiple samples to learn mixture models Jason D. Lee, Ran Gilad-Bachrach, Rich Caruana
- Learning Hidden Markov Models from Non-sequence Data via Tensor Decomposition Tzu-Kuo Huang, Jeff Schneider
- On model selection consistency of penalized M-estimators: a geometric theory Jason D. Lee, Yuekai Sun, Jonathan E. Taylor
- Dropout Training as Adaptive Regularization Stefan Wager, Sida Wang, Percy S. Liang
- New Subsampling Algorithms for Fast Least Squares Regression Paramveer Dhillon, Yichao Lu, Dean P. Foster, Lyle Ungar
- Faster Ridge Regression via the Subsampled Randomized Hadamard Transform Yichao Lu, Paramveer Dhillon, Dean P. Foster, Lyle Ungar
- Accelerated Mini-Batch Stochastic Dual Coordinate Ascent Shai Shalev-Shwartz, Tong Zhang
- Improved and Generalized Upper Bounds on the Complexity of Policy Iteration Bruno Scherrer
- Online Learning of Nonparametric Mixture Models via Sequential Variational Approximation Dahua Lin
- Online Robust PCA via Stochastic Optimization Jiashi Feng, Huan Xu, Shuicheng Yan
- Least Informative Dimensions Fabian Sinz, Anna Stockl, Jan Grewe, Jan Benda
- A Scalable Approach to Probabilistic Latent Space Inference of Large-Scale Networks Junming Yin, Qirong Ho, Eric P. Xing
- Understanding variable importances in forests of randomized trees Gilles Louppe, Louis Wehenkel, Antonio Sutera, Pierre Geurts
- Correlated random features for fast semi-supervised learning Brian McWilliams, David Balduzzi, Joachim M. Buhmann
- Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process Mixture Trevor Campbell, Miao Liu, Brian Kulis, Jonathan P. How, Lawrence Carin
- Better Approximation and Faster Algorithm Using the Proximal Average Yao-Liang Yu
- Rapid Distance-Based Outlier Detection via Sampling Mahito Sugiyama, Karsten Borgwardt
- Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima Po-Ling Loh, Martin J. Wainwright
- Non-Linear Domain Adaptation with Boosting Carlos J. Becker, Christos M. Christoudias, Pascal Fua
- Mid-level Visual Element Discovery as Discriminative Mode Seeking Carl Doersch, Abhinav Gupta, Alexei A. Efros
- q-OCSVM: A q-Quantile Estimator for High-Dimensional Distributions Assaf Glazer, Michael Lindenbaum, Shaul Markovitch
- Auditing: Active Learning with Outcome-Dependent Query Costs Sivan Sabato, Anand D. Sarwate, Nati Srebro
- A message-passing algorithm for multi-agent trajectory planning Jose Bento, Nate Derbinsky, Javier Alonso-Mora, Jonathan S. Yedidia
- Learning Stochastic Feedforward Neural Networks Yichuan Tang, Ruslan R. Salakhutdinov
- Inferring neural population dynamics from multiple partial recordings of the same neural circuit Srini Turaga, Lars Buesing, Adam M. Packer, Henry Dalgleish, Noah Pettit, Michael Hausser, Jakob Macke
- Multi-Prediction Deep Boltzmann Machines Ian Goodfellow, Mehdi Mirza, Aaron Courville, Yoshua Bengio
- Higher Order Priors for Joint Intrinsic Image, Objects, and Attributes Estimation Vibhav Vineet, Carsten Rother, Philip Torr
- Blind Calibration in Compressed Sensing using Message Passing Algorithms Christophe Schulke, Francesco Caltagirone, Florent Krzakala, Lenka Zdeborová
- Learning Trajectory Preferences for Manipulators via Iterative Improvement Ashesh Jain, Brian Wojcik, Thorsten Joachims, Ashutosh Saxena
- Large Scale Distributed Sparse Precision Estimation Huahua Wang, Arindam Banerjee, Cho-Jui Hsieh, Pradeep K. Ravikumar, Inderjit S. Dhillon
- Neural representation of action sequences: how far can a simple snippet-matching model take us? Cheston Tan, Jedediah M. Singer, Thomas Serre, David Sheinberg, Tomaso Poggio
- On Algorithms for Sparse Multi-factor NMF Siwei Lyu, Xin Wang
- Dirty Statistical Models Eunho Yang, Pradeep K. Ravikumar
- Parallel Sampling of DP Mixture Models using Sub-Cluster Splits Jason Chang, John W. Fisher III
- Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent Tianbao Yang
- Prior-free and prior-dependent regret bounds for Thompson Sampling Sebastien Bubeck, Che-Yu Liu
- Structured Learning via Logistic Regression Justin Domke
- Which Space Partitioning Tree to Use for Search? Parikshit Ram, Alexander Gray
- Projecting Ising Model Parameters for Fast Mixing Justin Domke, Xianghang Liu
- Mixed Optimization for Smooth Functions Mehrdad Mahdavi, Lijun Zhang, Rong Jin
- Conditional Random Fields via Univariate Exponential Families Eunho Yang, Pradeep K. Ravikumar, Genevera I. Allen, Zhandong Liu
- Stochastic blockmodel approximation of a graphon: Theory and consistent estimation Edo M. Airoldi, Thiago B. Costa, Stanley H. Chan
- Reinforcement Learning in Robust Markov Decision Processes Shiau Hong Lim, Huan Xu, Shie Mannor
- On the Linear Convergence of the Proximal Gradient Method for Trace Norm Regularization Ke Hou, Zirui Zhou, Anthony Man-Cho So, Zhi-Quan Luo
- Recurrent networks of coupled Winner-Take-All oscillators for solving constraint satisfaction problems Hesham Mostafa, Lorenz. K. Mueller, Giacomo Indiveri
- Latent Structured Active Learning Wenjie Luo, Alex Schwing, Raquel Urtasun
- A Gang of Bandits Nicolò Cesa-Bianchi, Claudio Gentile, Giovanni Zappella
- Learning Feature Selection Dependencies in Multi-task Learning Daniel Hernández-Lobato, José Miguel Hernández-Lobato
- B-test: A Non-parametric, Low Variance Kernel Two-sample Test Wojciech Zaremba, Arthur Gretton, Matthew Blaschko
- Online PCA for Contaminated Data Jiashi Feng, Huan Xu, Shie Mannor, Shuicheng Yan
- Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n) Francis Bach, Eric Moulines
- Efficient Algorithm for Privately Releasing Smooth Queries Ziteng Wang, Kai Fan, Jiaqi Zhang, Liwei Wang
- Beyond Pairwise: Provably Fast Algorithms for Approximate k-Way Similarity Search Anshumali Shrivastava, Ping Li
- Unsupervised Spectral Learning of Finite State Transducers Raphael Bailly, Xavier Carreras, Ariadna Quattoni
- Learning a Deep Compact Image Representation for Visual Tracking Naiyan Wang, Dit-Yan Yeung
- Learning Multi-level Sparse Representations Ferran Diego Andilla, Fred A. Hamprecht
- Robust Data-Driven Dynamic Programming Grani Adiwena Hanasusanto, Daniel Kuhn
- Low-Rank Matrix and Tensor Completion via Adaptive Sampling Akshay Krishnamurthy, Aarti Singh
- Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Adrien Todeschini, François Caron, Marie Chavent
- Distributed Exploration in Multi-Armed Bandits Eshcar Hillel, Zohar S. Karnin, Tomer Koren, Ronny Lempel, Oren Somekh
- The Pareto Regret Frontier Wouter M. Koolen
- Direct 0-1 Loss Minimization and Margin Maximization with Boosting Shaodan Zhai, Tian Xia, Ming Tan, Shaojun Wang
- Regret based Robust Solutions for Uncertain Markov Decision Processes Asrar Ahmed, Pradeep Varakantham, Yossiri Adulyasak, Patrick Jaillet
- Speeding up Permutation Testing in Neuroimaging Chris Hinrichs, Vamsi K. Ithapu, Qinyuan Sun, Sterling C. Johnson, Vikas Singh
- Generalized Denoising Auto-Encoders as Generative Models Yoshua Bengio, Li Yao, Guillaume Alain, Pascal Vincent
- Supervised Sparse Analysis and Synthesis Operators Pablo Sprechmann, Roee Litman, Tal Ben Yakar, Alexander M. Bronstein, Guillermo Sapiro
- Low-rank matrix reconstruction and clustering via approximate message passing Ryosuke Matsushita, Toshiyuki Tanaka
- Reasoning With Neural Tensor Networks for Knowledge Base Completion Richard Socher, Danqi Chen, Christopher D. Manning, Andrew Ng
- Zero-Shot Learning Through Cross-Modal Transfer Richard Socher, Milind Ganjoo, Christopher D. Manning, Andrew Ng
- Estimating LASSO Risk and Noise Level Mohsen Bayati, Murat A. Erdogdu, Andrea Montanari
- Learning Adaptive Value of Information for Structured Prediction David J. Weiss, Ben Taskar
- Efficient Online Inference for Bayesian Nonparametric Relational Models Dae Il Kim, Prem K. Gopalan, David Blei, Erik Sudderth
- Approximate inference in latent Gaussian-Markov models from continuous time observations Botond Cseke, Manfred Opper, Guido Sanguinetti
- Linear Convergence with Condition Number Independent Access of Full Gradients Lijun Zhang, Mehrdad Mahdavi, Rong Jin
- When in Doubt, SWAP: High-Dimensional Sparse Recovery from Correlated Measurements Divyanshu Vats, Richard Baraniuk
- Wavelets on Graphs via Deep Learning Raif Rustamov, Leonidas J. Guibas
- Robust Spatial Filtering with Beta Divergence Wojciech Samek, Duncan Blythe, Klaus-Robert Müller, Motoaki Kawanabe
- Convex Relaxations for Permutation Problems Fajwel Fogel, Rodolphe Jenatton, Francis Bach, Alexandre D'Aspremont
- High-Dimensional Gaussian Process Bandits Josip Djolonga, Andreas Krause, Volkan Cevher
- A memory frontier for complex synapses Subhaneil Lahiri, Surya Ganguli
- Marginals-to-Models Reducibility Tim Roughgarden, Michael Kearns
- First-order Decomposition Trees Nima Taghipour, Jesse Davis, Hendrik Blockeel
- A Comparative Framework for Preconditioned Lasso Algorithms Fabian L. Wauthier, Nebojsa Jojic, Michael I. Jordan
- Lasso Screening Rules via Dual Polytope Projection Jie Wang, Jiayu Zhou, Peter Wonka, Jieping Ye
- Binary to Bushy: Bayesian Hierarchical Clustering with the Beta Coalescent Yuening Hu, Jordan L. Boyd-Graber, Hal Daume III, Z. Irene Ying
- A Latent Source Model for Nonparametric Time Series Classification George H. Chen, Stanislav Nikolov, Devavrat Shah
- Efficient Optimization for Sparse Gaussian Process Regression Yanshuai Cao, Marcus A. Brubaker, David J. Fleet, Aaron Hertzmann
- Lexical and Hierarchical Topic Regression Viet-An Nguyen, Jordan L. Boyd-Graber, Philip Resnik
- Stochastic Convex Optimization with Multiple Objectives Mehrdad Mahdavi, Tianbao Yang, Rong Jin
- A Kernel Test for Three-Variable Interactions Dino Sejdinovic, Arthur Gretton, Wicher Bergsma
- Memoized Online Variational Inference for Dirichlet Process Mixture Models Michael C. Hughes, Erik Sudderth
- Designed Measurements for Vector Count Data Liming Wang, David E. Carlson, Miguel Rodrigues, David Wilcox, Robert Calderbank, Lawrence Carin
- Robust Transfer Principal Component Analysis with Rank Constraints Yuhong Guo
- Online Learning with Switching Costs and Other Adaptive Adversaries Nicolò Cesa-Bianchi, Ofer Dekel, Ohad Shamir
- Learning Prices for Repeated Auctions with Strategic Buyers Kareem Amin, Afshin Rostamizadeh, Umar Syed
- Probabilistic Principal Geodesic Analysis Miaomiao Zhang, P.T. Fletcher
- Confidence Intervals and Hypothesis Testing for High-Dimensional Statistical Models Adel Javanmard, Andrea Montanari
- Learning with Noisy Labels Nagarajan Natarajan, Inderjit S. Dhillon, Pradeep K. Ravikumar, Ambuj Tewari
- Tracking Time-varying Graphical Structure Erich Kummerfeld, David Danks
- Factorized Asymptotic Bayesian Inference for Latent Feature Models Kohei Hayashi, Ryohei Fujimaki
- More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons, Garth A. Gibson, Greg Ganger, Eric P. Xing
- Bayesian Estimation of Latently-grouped Parameters in Undirected Graphical Models Jie Liu, David Page
- Online Learning with Costly Features and Labels Navid Zolghadr, Gabor Bartok, Russell Greiner, András György, Csaba Szepesvari
- Sparse nonnegative deconvolution for compressive calcium imaging: algorithms and phase transitions Eftychios A. Pnevmatikakis, Liam Paninski
- A Novel Two-Step Method for Cross Language Representation Learning Min Xiao, Yuhong Guo
- On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations Tamir Hazan, Subhransu Maji, Tommi Jaakkola
- Graphical Models for Inference with Missing Data Karthika Mohan, Judea Pearl, Jin Tian
- Reshaping Visual Datasets for Domain Adaptation Boqing Gong, Kristen Grauman, Fei Sha
- Statistical Active Learning Algorithms Maria-Florina F. Balcan, Vitaly Feldman
- Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits Ben Shababo, Brooks Paige, Ari Pakman, Liam Paninski
- Reflection methods for user-friendly submodular optimization Stefanie Jegelka, Francis Bach, Suvrit Sra
- Unsupervised Structure Learning of Stochastic And-Or Grammars Kewei Tu, Maria Pavlovskaia, Song-Chun Zhu
- Convex Tensor Decomposition via Structured Schatten Norm Regularization Ryota Tomioka, Taiji Suzuki
- Stochastic Ratio Matching of RBMs for Sparse High-Dimensional Inputs Yann Dauphin, Yoshua Bengio
- Learning Chordal Markov Networks by Constraint Satisfaction Jukka Corander, Tomi Janhunen, Jussi Rintanen, Henrik Nyman, Johan Pensar
- Parametric Task Learning Ichiro Takeuchi, Tatsuya Hongo, Masashi Sugiyama, Shinichi Nakajima
- A Deep Architecture for Matching Short Texts Zhengdong Lu, Hang Li
- Computing the Stationary Distribution Locally Christina E. Lee, Asuman Ozdaglar, Devavrat Shah
- Nonparametric Multi-group Membership Model for Dynamic Networks Myunghwan Kim, Jure Leskovec
- Adaptive Step-Size for Policy Gradient Methods Matteo Pirotta, Marcello Restelli, Luca Bascetta
- Optimistic Concurrency Control for Distributed Unsupervised Learning Xinghao Pan, Joseph E. Gonzalez, Stefanie Jegelka, Tamara Broderick, Michael I. Jordan
- Reservoir Boosting : Between Online and Offline Ensemble Learning Leonidas Lefakis, François Fleuret
- Multiclass Total Variation Clustering Xavier Bresson, Thomas Laurent, David Uminsky, James von Brecht
- Approximate Inference in Continuous Determinantal Processes Raja Hafiz Affandi, Emily Fox, Ben Taskar
- Global Solver and Its Efficient Approximation for Variational Bayesian Low-rank Subspace Clustering Shinichi Nakajima, Akiko Takeda, S. Derin Babacan, Masashi Sugiyama, Ichiro Takeuchi
- Thompson Sampling for 1-Dimensional Exponential Family Bandits Nathaniel Korda, Emilie Kaufmann, Remi Munos
- Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion Nguyen Viet Cuong, Wee Sun Lee, Nan Ye, Kian Ming A. Chai, Hai Leong Chieu
- It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals Barbara Rakitsch, Christoph Lippert, Karsten Borgwardt, Oliver Stegle
- Convex Calibrated Surrogates for Low-Rank Loss Matrices with Applications to Subset Ranking Losses Harish G. Ramaswamy, Shivani Agarwal, Ambuj Tewari
- Inverse Density as an Inverse Problem: the Fredholm Equation Approach Qichao Que, Mikhail Belkin
- Adaptive Multi-Column Deep Neural Networks with Application to Robust Image Denoising Forest Agostinelli, Michael R. Anderson, Honglak Lee
- EDML for Learning Parameters in Directed and Undirected Graphical Models Khaled S. Refaat, Arthur Choi, Adnan Darwiche
- Similarity Component Analysis Soravit Changpinyo, Kuan Liu, Fei Sha
- Approximate Bayesian Image Interpretation using Generative Probabilistic Graphics Programs Vikash K. Mansinghka, Tejas D. Kulkarni, Yura N. Perov, Josh Tenenbaum
- Local Privacy and Minimax Bounds: Sharp Rates for Probability Estimation John Duchi, Martin J. Wainwright, Michael I. Jordan
- Firing rate predictions in optimal balanced networks David G. Barrett, Sophie Denève, Christian K. Machens
- Manifold-based Similarity Adaptation for Label Propagation Masayuki Karasuyama, Hiroshi Mamitsuka
- Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty Haichao Zhang, David Wipf
- Near-Optimal Entrywise Sampling for Data Matrices Dimitris Achlioptas, Zohar S. Karnin, Edo Liberty
- Learning to Prune in Metric and Non-Metric Spaces Leonid Boytsov, Bilegsaikhan Naidan
- Online learning in episodic Markovian decision processes by relative entropy policy search Alexander Zimin, Gergely Neu
- Optimistic policy iteration and natural actor-critic: A unifying view and a non-optimality result Paul Wagner
- Bayesian Hierarchical Community Discovery Charles Blundell, Yee Whye Teh
- From Bandits to Experts: A Tale of Domination and Independence Noga Alon, Nicolò Cesa-Bianchi, Claudio Gentile, Yishay Mansour
- Predictive PAC Learning and Process Decompositions Cosma Shalizi, Aryeh Kontorovich
- Pass-efficient unsupervised feature selection Crystal Maung, Haim Schweitzer
- Simultaneous Rectification and Alignment via Robust Recovery of Low-rank Tensors Xiaoqin Zhang, Di Wang, Zhengyuan Zhou, Yi Ma
- Bayesian Mixture Modelling and Inference based Thompson Sampling in Monte-Carlo Tree Search Aijun Bai, Feng Wu, Xiaoping Chen
- Solving inverse problem of Markov chain with partial observations Tetsuro Morimura, Takayuki Osogami, Tsuyoshi Ide
- Locally Adaptive Bayesian Multivariate Time Series Daniele Durante, Bruno Scarpa, David B. Dunson
- Mapping paradigm ontologies to and from the brain Yannick Schwartz, Bertrand Thirion, Gael Varoquaux
- Noise-Enhanced Associative Memories Amin Karbasi, Amir Hesam Salavati, Amin Shokrollahi, Lav R. Varshney
- Exact and Stable Recovery of Pairwise Interaction Tensors Shouyuan Chen, Michael R. Lyu, Irwin King, Zenglin Xu
- Bayesian entropy estimation for binary spike train data using parametric prior knowledge Evan W. Archer, Il Memming Park, Jonathan W. Pillow
- Perfect Associative Learning with Spike-Timing-Dependent Plasticity Christian Albers, Maren Westkott, Klaus Pawelzik
- On Poisson Graphical Models Eunho Yang, Pradeep K. Ravikumar, Genevera I. Allen, Zhandong Liu
- Streaming Variational Bayes Tamara Broderick, Nicholas Boyd, Andre Wibisono, Ashia C. Wilson, Michael I. Jordan
- Gaussian Process Conditional Copulas with Applications to Financial Time Series José Miguel Hernández-Lobato, James R. Lloyd, Daniel Hernández-Lobato
- Extracting regions of interest from biological images with convolutional sparse block coding Marius Pachitariu, Adam M. Packer, Noah Pettit, Henry Dalgleish, Michael Hausser, Maneesh Sahani
- Approximate Dynamic Programming Finally Performs Well in the Game of Tetris Victor Gabillon, Mohammad Ghavamzadeh, Bruno Scherrer
- Third-Order Edge Statistics: Contour Continuation, Curvature, and Cortical Connections Matthew Lawlor, Steven W. Zucker
- DESPOT: Online POMDP Planning with Regularization Adhiraj Somani, Nan Ye, David Hsu, Wee Sun Lee
- Matrix Completion From any Given Set of Observations Troy Lee, Adi Shraibman
- Regression-tree Tuning in a Streaming Setting Samory Kpotufe, Francesco Orabona
- Multiscale Dictionary Learning for Estimating Conditional Distributions Francesca Petralia, Joshua T. Vogelstein, David B. Dunson
- Dimension-Free Exponentiated Gradient Francesco Orabona
- Stochastic Optimization of PCA with Capped MSG Raman Arora, Andy Cotter, Nati Srebro
- On Flat versus Hierarchical Classification in Large-Scale Taxonomies Rohit Babbar, Ioannis Partalas, Eric Gaussier, Massih-Reza Amini
- Learning Gaussian Graphical Models with Observed or Latent FVSs Ying Liu, Alan Willsky
- Visual Concept Learning: Combining Machine Vision and Bayesian Generalization on Concept Hierarchies Yangqing Jia, Joshua T. Abbott, Joseph L. Austerweil, Thomas Griffiths, Trevor Darrell
- Robust Bloom Filters for Large MultiLabel Classification Tasks Moustapha M. Cisse, Nicolas Usunier, Thierry Artières, Patrick Gallinari
- Solving the multi-way matching problem by permutation synchronization Deepti Pachauri, Risi Kondor, Vikas Singh
- Generalizing Analytic Shrinkage for Arbitrary Covariance Structures Daniel Bartz, Klaus-Robert Müller
- Top-Down Regularization of Deep Belief Networks Hanlin Goh, Nicolas Thome, Matthieu Cord, Joo-Hwee Lim
- Learning Efficient Random Maximum A-Posteriori Predictors with Non-Decomposable Loss Functions Tamir Hazan, Subhransu Maji, Joseph Keshet, Tommi Jaakkola
- Heterogeneous-Neighborhood-based Multi-Task Local Learning Algorithms Yu Zhang
- Machine Teaching for Bayesian Learners in the Exponential Family Xiaojin Zhu
- Scoring Workers in Crowdsourcing: How Many Control Questions are Enough? Qiang Liu, Alexander T. Ihler, Mark Steyvers
- Action from Still Image Dataset and Inverse Optimal Control to Learn Task Specific Visual Scanpaths Stefan Mathe, Cristian Sminchisescu
- A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data Jasper Snoek, Richard Zemel, Ryan P. Adams
- Robust Sparse Principal Component Regression under the High Dimensional Elliptical Model Fang Han, Han Liu
- Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation Bogdan Savchynskyy, Jörg Hendrik Kappes, Paul Swoboda, Christoph Schnörr
- Near-optimal Anomaly Detection in Graphs using Lovasz Extended Scan Statistic James L. Sharpnack, Akshay Krishnamurthy, Aarti Singh
- Demixing odors - fast inference in olfaction Agnieszka Grabska-Barwinska, Jeff Beck, Alexandre Pouget, Peter Latham
- Learning Multiple Models via Regularized Weighting Daniel Vainsencher, Shie Mannor, Huan Xu
- When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity Anima Anandkumar, Daniel J. Hsu, Majid Janzamin, Sham M. Kakade
- Distributed k-means and k-median Clustering on General Topologies Maria-Florina F. Balcan, Steven Ehrlich, Yingyu Liang
- Multi-Task Bayesian Optimization Kevin Swersky, Jasper Snoek, Ryan P. Adams
- Online Learning of Dynamic Parameters in Social Networks Shahin Shahrampour, Sasha Rakhlin, Ali Jadbabaie
- A Graphical Transformation for Belief Propagation: Maximum Weight Matchings and Odd-Sized Cycles Jinwoo Shin, Andrew E. Gelfand, Misha Chertkov
- Learning with Invariance via Linear Functionals on Reproducing Kernel Hilbert Space Xinhua Zhang, Wee Sun Lee, Yee Whye Teh
- Approximate Gaussian process inference for the drift function in stochastic differential equations Andreas Ruttor, Philipp Batz, Manfred Opper
- Distributed Submodular Maximization: Identifying Representative Elements in Massive Data Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, Andreas Krause
- Adaptive Market Making via Online Learning Jacob Abernethy, Satyen Kale
- On the Sample Complexity of Subspace Learning Alessandro Rudi, Guillermo D. Canas, Lorenzo Rosasco
- Spike train entropy-rate estimation using hierarchical Dirichlet process priors Karin C. Knudson, Jonathan W. Pillow
- Embed and Project: Discrete Sampling with Universal Hashing Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, Bart Selman
- Discriminative Transfer Learning with Tree-based Priors Nitish Srivastava, Ruslan R. Salakhutdinov
- Small-Variance Asymptotics for Hidden Markov Models Anirban Roychowdhury, Ke Jiang, Brian Kulis
- Convergence of Monte Carlo Tree Search in Simultaneous Move Games Viliam Lisy, Vojta Kovarik, Marc Lanctot, Branislav Bosansky
- DeViSE: A Deep Visual-Semantic Embedding Model Andrea Frome, Greg S. Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Marc'Aurelio Ranzato, Tomas Mikolov
- Reward Mapping for Transfer in Long-Lived Agents Xiaoxiao Guo, Satinder Singh, Richard L. Lewis
- Minimax Theory for High-dimensional Gaussian Mixtures with Sparse Mean Separation Martin Azizyan, Aarti Singh, Larry Wasserman
- Predicting Parameters in Deep Learning Misha Denil, Babak Shakibi, Laurent Dinh, Marc'Aurelio Ranzato, Nando de Freitas
- Estimating the Unseen: Improved Estimators for Entropy and other Properties Paul Valiant, Gregory Valiant
- What do row and column marginals reveal about your dataset? Behzad Golshan, John Byers, Evimaria Terzi
- RNADE: The real-valued neural autoregressive density-estimator Benigno Uria, Iain Murray, Hugo Larochelle
- Two-Target Algorithms for Infinite-Armed Bandits with Bernoulli Rewards Thomas Bonald, Alexandre Proutiere
- Reconciling "priors" & "priors" without prejudice? Remi Gribonval, Pierre Machart
- Sparse Overlapping Sets Lasso for Multitask Learning and its Application to fMRI Analysis Nikhil Rao, Christopher Cox, Rob Nowak, Timothy T. Rogers
- Sensor Selection in High-Dimensional Gaussian Trees with Nuisances Daniel S. Levine, Jonathan P. How
- Sequential Transfer in Multi-armed Bandit with Finite Set of Models Mohammad Gheshlaghi azar, Alessandro Lazaric, Emma Brunskill
- Buy-in-Bulk Active Learning Liu Yang, Jaime Carbonell
- Contrastive Learning Using Spectral Methods James Y. Zou, Daniel J. Hsu, David C. Parkes, Ryan P. Adams
- Message Passing Inference with Chemical Reaction Networks Nils E. Napp, Ryan P. Adams
- Eluder Dimension and the Sample Complexity of Optimistic Exploration Dan Russo, Benjamin Van Roy
- Learning word embeddings efficiently with noise-contrastive estimation Andriy Mnih, Koray Kavukcuoglu
- Sparse Inverse Covariance Estimation with Calibration Tuo Zhao, Han Liu
- Stochastic Majorization-Minimization Algorithms for Large-Scale Optimization Julien Mairal
- Sinkhorn Distances: Lightspeed Computation of Optimal Transport Marco Cuturi
- Speedup Matrix Completion with Side Information: Application to Multi-Label Learning Miao Xu, Rong Jin, Zhi-Hua Zhou
- Compete to Compute Rupesh K. Srivastava, Jonathan Masci, Sohrob Kazerounian, Faustino Gomez, Juergen Schmidhuber
- Fast Determinantal Point Process Sampling with Application to Clustering Byungkon Kang
- Information-theoretic lower bounds for distributed statistical estimation with communication constraints Yuchen Zhang, John Duchi, Michael I. Jordan, Martin J. Wainwright
- Projected Natural Actor-Critic Philip S. Thomas, William C. Dabney, Stephen Giguere, Sridhar Mahadevan
- How to Hedge an Option Against an Adversary: Black-Scholes Pricing is Minimax Optimal Jacob Abernethy, Peter L. Bartlett, Rafael Frongillo, Andre Wibisono
- Discovering Hidden Variables in Noisy-Or Networks using Quartet Tests Yacine Jernite, Yonatan Halpern, David Sontag
- Error-Minimizing Estimates and Universal Entry-Wise Error Bounds for Low-Rank Matrix Completion Franz Kiraly, Louis Theran
- Learning the Local Statistics of Optical Flow Dan Rosenbaum, Daniel Zoran, Yair Weiss
- Aggregating Optimistic Planning Trees for Solving Markov Decision Processes Gunnar Kedenburg, Raphael Fonteneau, Remi Munos
- Robust learning of low-dimensional dynamics from large neural ensembles David Pfau, Eftychios A. Pnevmatikakis, Liam Paninski
- Estimation Bias in Multi-Armed Bandit Algorithms for Search Advertising Min Xu, Tao Qin, Tie-Yan Liu
- Action is in the Eye of the Beholder: Eye-gaze Driven Model for Spatio-Temporal Action Localization Nataliya Shapovalova, Michalis Raptis, Leonid Sigal, Greg Mori
- A* Lasso for Learning a Sparse Bayesian Network Structure for Continuous Variables Jing Xiang, Seyoung Kim
- The Total Variation on Hypergraphs - Learning on Hypergraphs Revisited Matthias Hein, Simon Setzer, Leonardo Jost, Syama Sundar Rangapuram
- Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints Rishabh K. Iyer, Jeff A. Bilmes
- Scalable Inference for Logistic-Normal Topic Models Jianfei Chen, Jun Zhu, Zi Wang, Xun Zheng, Bo Zhang
- Spectral methods for neural characterization using generalized quadratic models Il Memming Park, Evan W. Archer, Nicholas Priebe, Jonathan W. Pillow
- Universal models for binary spike patterns using centered Dirichlet processes Il Memming Park, Evan W. Archer, Kenneth Latimer, Jonathan W. Pillow
- Synthesizing Robust Plans under Incomplete Domain Models Tuan A. Nguyen, Subbarao Kambhampati, Minh Do
- Integrated Non-Factorized Variational Inference Shaobo Han, Xuejun Liao, Lawrence Carin
- Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions Ari Pakman, Liam Paninski
- Symbolic Opportunistic Policy Iteration for Factored-Action MDPs Aswin Raghavan, Roni Khardon, Alan Fern, Prasad Tadepalli
- Online Learning in Markov Decision Processes with Adversarially Chosen Transition Probability Distributions Yasin Abbasi, Peter L. Bartlett, Varun Kanade, Yevgeny Seldin, Csaba Szepesvari
- Flexible sampling of discrete data correlations without the marginal distributions Alfredo Kalaitzis, Ricardo Silva
- One-shot learning by inverting a compositional causal process Brenden M. Lake, Ruslan R. Salakhutdinov, Josh Tenenbaum
- Statistical analysis of coupled time series with Kernel Cross-Spectral Density operators. Michel Besserve, Nikos K. Logothetis, Prof. Bernhard Schölkopf
- Fast Algorithms for Gaussian Noise Invariant Independent Component Analysis James R. Voss, Luis Rademacher, Mikhail Belkin
- Deep Neural Networks for Object Detection Christian Szegedy, Alexander Toshev, Dumitru Erhan
- Geometric optimisation on positive definite matrices for elliptically contoured distributions Suvrit Sra, Reshad Hosseini
- Sign Cauchy Projections and Chi-Square Kernel Ping Li, Gennady Samorodnitsk, John Hopcroft
- Relevance Topic Model for Unstructured Social Group Activity Recognition Fang Zhao, Yongzhen Huang, Liang Wang, Tieniu Tan
- k-Prototype Learning for 3D Rigid Structures Hu Ding, Ronald Berezney, Jinhui Xu
- Restricting exchangeable nonparametric distributions Sinead A. Williamson, Steve N. MacEachern, Eric P. Xing
- Forgetful Bayes and myopic planning: Human learning and decision-making in a bandit setting Shunan Zhang, Angela J. Yu
- Probabilistic Movement Primitives Alexandros Paraschos, Christian Daniel, Jan R. Peters, Gerhard Neumann
- Policy Shaping: Integrating Human Feedback with Reinforcement Learning Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles Isbell, Andrea L. Thomaz
- Multilinear Dynamical Systems for Tensor Time Series Mark Rogers, Lei Li, Stuart J. Russell
- Deep content-based music recommendation Aaron van den Oord, Sander Dieleman, Benjamin Schrauwen
- A Stability-based Validation Procedure for Differentially Private Machine Learning Kamalika Chaudhuri, Staal A. Vinterbo
- Capacity of strong attractor patterns to model behavioural and cognitive prototypes Abbas Edalat
- Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA Vincent Q. Vu, Juhee Cho, Jing Lei, Karl Rohe
- Cluster Trees on Manifolds Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, Larry Wasserman
- Bayesian inference for low rank spatiotemporal neural receptive fields Mijung Park, Jonathan W. Pillow
- Adaptive Submodular Maximization in Bandit Setting Victor Gabillon, Branislav Kveton, Zheng Wen, Brian Eriksson, S. Muthukrishnan
- Generalized Method-of-Moments for Rank Aggregation Hossein Azari Soufiani, William Chen, David C. Parkes, Lirong Xia
- Analyzing Hogwild Parallel Gaussian Gibbs Sampling Matthew Johnson, James Saunderson, Alan Willsky
- Minimax Optimal Algorithms for Unconstrained Linear Optimization Brendan McMahan, Jacob Abernethy
- (Nearly) Optimal Algorithms for Private Online Learning in Full-information and Bandit Settings Abhradeep Guha Thakurta, Adam Smith
- Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions Rishabh K. Iyer, Stefanie Jegelka, Jeff A. Bilmes
- Σ-Optimality for Active Learning on Gaussian Random Fields Yifei Ma, Roman Garnett, Jeff Schneider
- Learning Kernels Using Local Rademacher Complexity Corinna Cortes, Marius Kloft, Mehryar Mohri
- Annealing between distributions by averaging moments Roger B. Grosse, Chris J. Maddison, Ruslan R. Salakhutdinov
- Optimizing Instructional Policies Robert V. Lindsey, Michael C. Mozer, William J. Huggins, Harold Pashler
- Translating Embeddings for Modeling Multi-relational Data Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, Oksana Yakhnenko
- Phase Retrieval using Alternating Minimization Praneeth Netrapalli, Prateek Jain, Sujay Sanghavi
- Real-Time Inference for a Gamma Process Model of Neural Spiking David E. Carlson, Vinayak Rao, Joshua T. Vogelstein, Lawrence Carin
- Understanding Dropout Pierre Baldi, Peter J. Sadowski
- The Power of Asymmetry in Binary Hashing Behnam Neyshabur, Nati Srebro, Ruslan R. Salakhutdinov, Yury Makarychev, Payman Yadollahpour
- Estimation, Optimization, and Parallelism when Data is Sparse John Duchi, Michael I. Jordan, Brendan McMahan
- A multi-agent control framework for co-adaptation in brain-computer interfaces Josh S. Merel, Roy Fox, Tony Jebara, Liam Paninski
- Modeling Overlapping Communities with Node Popularities Prem K. Gopalan, Chong Wang, David Blei
- Learning from Limited Demonstrations Beomjoon Kim, Amir massoud Farahmand, Joelle Pineau, Doina Precup
- On the Complexity and Approximation of Binary Evidence in Lifted Inference Guy Van den Broeck, Adnan Darwiche
- On the Representational Efficiency of Restricted Boltzmann Machines James Martens, Arkadev Chattopadhya, Toni Pitassi, Richard Zemel
- Memory Limited, Streaming PCA Ioannis Mitliagkas, Constantine Caramanis, Prateek Jain
- An Approximate, Efficient LP Solver for LP Rounding Srikrishna Sridhar, Stephen Wright, Christopher Re, Ji Liu, Victor Bittorf, Ce Zhang
- Linear decision rule as aspiration for simple decision heuristics Özgür Şimşek
- On the Relationship Between Binary Classification, Bipartite Ranking, and Binary Class Probability Estimation Harikrishna Narasimhan, Shivani Agarwal
- Bayesian inference as iterated random functions with applications to sequential inference in graphical models Arash Amini, XuanLong Nguyen
- Compressive Feature Learning Hristo S. Paskov, Robert West, John C. Mitchell, Trevor Hastie
- Moment-based Uniform Deviation Bounds for k-means and Friends Matus J. Telgarsky, Sanjoy Dasgupta
- Fast Template Evaluation with Vector Quantization Mohammad Amin Sadeghi, David Forsyth
- Context-sensitive active sensing in humans Sheeraz Ahmad, He Huang, Angela J. Yu
- A New Convex Relaxation for Tensor Completion Bernardino Romera-Paredes, Massimiliano Pontil
- Variational Planning for Graph-based MDPs Qiang Cheng, Qiang Liu, Feng Chen, Alexander T. Ihler
- Convex Two-Layer Modeling Özlem Aslan, Hao Cheng, Xinhua Zhang, Dale Schuurmans
- Sketching Structured Matrices for Faster Nonlinear Regression Haim Avron, Vikas Sindhwani, David Woodruff
- (More) Efficient Reinforcement Learning via Posterior Sampling Ian Osband, Dan Russo, Benjamin Van Roy
- Model Selection for High-Dimensional Regression under the Generalized Irrepresentability Condition Adel Javanmard, Andrea Montanari
- Efficient Exploration and Value Function Generalization in Deterministic Systems Zheng Wen, Benjamin Van Roy
- Bellman Error Based Feature Generation using Random Projections on Sparse Spaces Mahdi Milani Fard, Yuri Grinberg, Amir massoud Farahmand, Joelle Pineau, Doina Precup
- Learning and using language via recursive pragmatic reasoning about other agents Nathaniel J. Smith, Noah Goodman, Michael Frank
- Learning Stochastic Inverses Andreas Stuhlmüller, Jacob Taylor, Noah Goodman
- Learning invariant representations and applications to face verification Qianli Liao, Joel Z. Leibo, Tomaso Poggio
- Optimization, Learning, and Games with Predictable Sequences Sasha Rakhlin, Karthik Sridharan
- Adaptivity to Local Smoothness and Dimension in Kernel Regression Samory Kpotufe, Vikas Garg
- Adaptive dropout for training deep neural networks Jimmy Ba, Brendan Frey
- Hierarchical Modular Optimization of Convolutional Networks Achieves Representations Similar to Macaque IT and Human Ventral Stream Daniel L. Yamins, Ha Hong, Charles Cadieu, James J. DiCarlo
- Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex Sam Patterson, Yee Whye Teh
- Distributed Representations of Words and Phrases and their Compositionality Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, Jeff Dean
- Regularized Spectral Clustering under the Degree-Corrected Stochastic Blockmodel Tai Qin, Karl Rohe
- Analyzing the Harmonic Structure in Graph-Based Learning Xiao-Ming Wu, Zhenguo Li, Shih-Fu Chang
- Recurrent linear models of simultaneously-recorded neural populations Marius Pachitariu, Biljana Petreska, Maneesh Sahani
- Scalable Influence Estimation in Continuous-Time Diffusion Networks Nan Du, Le Song, Manuel Gomez Rodriguez, Hongyuan Zha
- Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC Roger Frigola, Fredrik Lindsten, Thomas B. Schön, Carl Edward Rasmussen
- BIG & QUIC: Sparse Inverse Covariance Estimation for a Million Variables Cho-Jui Hsieh, Matyas A. Sustik, Inderjit S. Dhillon, Pradeep K. Ravikumar, Russell Poldrack
- The Fast Convergence of Incremental PCA Akshay Balsubramani, Sanjoy Dasgupta, Yoav Freund
- Multisensory Encoding, Decoding, and Identification Aurel A. Lazar, Yevgeniy Slutskiy
- Adaptive Anonymity via b-Matching Krzysztof M. Choromanski, Tony Jebara, Kui Tang
- Optimal integration of visual speed across different spatiotemporal frequency channels Matjaz Jogan, Alan A. Stocker
- Matrix factorization with binary components Martin Slawski, Matthias Hein, Pavlo Lutsik
- Learning to Pass Expectation Propagation Messages Nicolas Heess, Daniel Tarlow, John Winn
- Robust Low Rank Kernel Embeddings of Multivariate Distributions Le Song, Bo Dai