Advances in Neural Information Processing Systems 22 (NIPS 2009)
The papers below appear in Advances in Neural Information Processing Systems 22 edited by Y. Bengio and D. Schuurmans and J.D. Lafferty and C.K.I. Williams and A. Culotta.They are proceedings from the conference, "Neural Information Processing Systems 2009."
- Information-theoretic lower bounds on the oracle complexity of convex optimization Alekh Agarwal, Martin J. Wainwright, Peter L. Bartlett, Pradeep K. Ravikumar
- Streaming k-means approximation Nir Ailon, Ragesh Jaiswal, Claire Monteleoni
- Complexity of Decentralized Control: Special Cases Martin Allen, Shlomo Zilberstein
- Learning from Multiple Partially Observed Views - an Application to Multilingual Text Categorization Massih Amini, Nicolas Usunier, Cyril Goutte
- Constructing Topological Maps using Markov Random Fields and Loop-Closure Detection Roy Anati, Kostas Daniilidis
- Data-driven calibration of linear estimators with minimal penalties Sylvain Arlot, Francis R. Bach
- On Learning Rotations Raman Arora
- Polynomial Semantic Indexing Bing Bai, Jason Weston, David Grangier, Ronan Collobert, Kunihiko Sadamasa, Yanjun Qi, Corinna Cortes, Mehryar Mohri
- Nonparametric Bayesian Models for Unsupervised Event Coreference Resolution Cosmin Bejan, Matthew Titsworth, Andrew Hickl, Sanda Harabagiu
- Group Sparse Coding Samy Bengio, Fernando Pereira, Yoram Singer, Dennis Strelow
- Neurometric function analysis of population codes Philipp Berens, Sebastian Gerwinn, Alexander Ecker, Matthias Bethge
- Slow, Decorrelated Features for Pretraining Complex Cell-like Networks Yoshua Bengio, James S. Bergstra
- No evidence for active sparsification in the visual cortex Pietro Berkes, Ben White, Jozsef Fiser
- Manifold Regularization for SIR with Rate Root-n Convergence Wei Bian, Dacheng Tao
- Augmenting Feature-driven fMRI Analyses: Semi-supervised learning and resting state activity Andreas Bartels, Matthew Blaschko, Jacquelyn A. Shelton
- Efficient Match Kernel between Sets of Features for Visual Recognition Liefeng Bo, Cristian Sminchisescu
- Randomized Pruning: Efficiently Calculating Expectations in Large Dynamic Programs Alexandre Bouchard-côté, Slav Petrov, Dan Klein
- Unsupervised Feature Selection for the k-means Clustering Problem Christos Boutsidis, Petros Drineas, Michael W. Mahoney
- On Invariance in Hierarchical Models Jake Bouvrie, Lorenzo Rosasco, Tomaso Poggio
- Nash Equilibria of Static Prediction Games Michael Brückner, Tobias Scheffer
- Optimal context separation of spiking haptic signals by second-order somatosensory neurons Romain Brasselet, Roland Johansson, Angelo Arleo
- Manifold Embeddings for Model-Based Reinforcement Learning under Partial Observability Keith Bush, Joelle Pineau
- Learning to Explore and Exploit in POMDPs Chenghui Cai, Xuejun Liao, Lawrence Carin
- Speaker Comparison with Inner Product Discriminant Functions Zahi Karam, Douglas Sturim, William M. Campbell
- A Stochastic approximation method for inference in probabilistic graphical models Peter Carbonetto, Matthew King, Firas Hamze
- Bayesian Nonparametric Models on Decomposable Graphs Francois Caron, Arnaud Doucet
- Adaptive Design Optimization in Experiments with People Daniel Cavagnaro, Jay Myung, Mark A. Pitt
- Efficient Bregman Range Search Lawrence Cayton
- Discriminative Network Models of Schizophrenia Irina Rish, Benjamin Thyreau, Bertrand Thirion, Marion Plaze, Marie-laure Paillere-martinot, Catherine Martelli, Jean-luc Martinot, Jean-baptiste Poline, Guillermo A. Cecchi
- Learning with Compressible Priors Volkan Cevher
- Exploring Functional Connectivities of the Human Brain using Multivariate Information Analysis Barry Chai, Dirk Walther, Diane Beck, Li Fei-fei
- Generalization Errors and Learning Curves for Regression with Multi-task Gaussian Processes Kian M. Chai
- Reading Tea Leaves: How Humans Interpret Topic Models Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L. Boyd-graber, David M. Blei
- A Parameter-free Hedging Algorithm Kamalika Chaudhuri, Yoav Freund, Daniel J. Hsu
- An Online Algorithm for Large Scale Image Similarity Learning Gal Chechik, Uri Shalit, Varun Sharma, Samy Bengio
- Ranking Measures and Loss Functions in Learning to Rank Wei Chen, Tie-yan Liu, Yanyan Lan, Zhi-ming Ma, Hang Li
- Factor Modeling for Advertisement Targeting Ye Chen, Michael Kapralov, John Canny, Dmitry Y. Pavlov
- The Ordered Residual Kernel for Robust Motion Subspace Clustering Tat-jun Chin, Hanzi Wang, David Suter
- Kernel Methods for Deep Learning Youngmin Cho, Lawrence K. Saul
- Approximating MAP by Compensating for Structural Relaxations Arthur Choi, Adnan Darwiche
- AUC optimization and the two-sample problem Nicolas Vayatis, Marine Depecker, Stéphan J. Clémençcon
- Statistical Models of Linear and Nonlinear Contextual Interactions in Early Visual Processing Ruben Coen-cagli, Peter Dayan, Odelia Schwartz
- fMRI-Based Inter-Subject Cortical Alignment Using Functional Connectivity Bryan Conroy, Ben Singer, James Haxby, Peter J. Ramadge
- Sensitivity analysis in HMMs with application to likelihood maximization Pierre-arnaud Coquelin, Romain Deguest, Rémi Munos
- Learning Non-Linear Combinations of Kernels Corinna Cortes, Mehryar Mohri, Afshin Rostamizadeh
- An Infinite Factor Model Hierarchy Via a Noisy-Or Mechanism Douglas Eck, Yoshua Bengio, Aaron C. Courville
- Adaptive Regularization of Weight Vectors Koby Crammer, Alex Kulesza, Mark Dredze
- Learning transport operators for image manifolds Benjamin Culpepper, Bruno A. Olshausen
- White Functionals for Anomaly Detection in Dynamical Systems Marco Cuturi, Jean-philippe Vert, Alexandre D'aspremont
- L_1-Penalized Robust Estimation for a Class of Inverse Problems Arising in Multiview Geometry Arnak Dalalyan, Renaud Keriven
- Distribution-Calibrated Hierarchical Classification Ofer Dekel
- A Smoothed Approximate Linear Program Vijay Desai, Vivek Farias, Ciamac C. Moallemi
- Localizing Bugs in Program Executions with Graphical Models Laura Dietz, Valentin Dallmeier, Andreas Zeller, Tobias Scheffer
- The Infinite Partially Observable Markov Decision Process Finale Doshi-velez
- A Bayesian Model for Simultaneous Image Clustering, Annotation and Object Segmentation Lan Du, Lu Ren, Lawrence Carin, David B. Dunson
- Efficient Learning using Forward-Backward Splitting Yoram Singer, John C. Duchi
- A Data-Driven Approach to Modeling Choice Vivek Farias, Srikanth Jagabathula, Devavrat Shah
- Subject independent EEG-based BCI decoding Siamac Fazli, Cristian Grozea, Marton Danoczy, Benjamin Blankertz, Florin Popescu, Klaus-Robert Müller
- Semi-Supervised Learning in Gigantic Image Collections Rob Fergus, Yair Weiss, Antonio Torralba
- Evaluating multi-class learning strategies in a generative hierarchical framework for object detection Sanja Fidler, Marko Boben, Ales Leonardis
- Orthogonal Matching Pursuit From Noisy Random Measurements: A New Analysis Sundeep Rangan, Alyson K. Fletcher
- Sharing Features among Dynamical Systems with Beta Processes Emily Fox, Michael I. Jordan, Erik B. Sudderth, Alan S. Willsky
- An Additive Latent Feature Model for Transparent Object Recognition Mario Fritz, Gary Bradski, Sergey Karayev, Trevor Darrell, Michael J. Black
- An LP View of the M-best MAP problem Menachem Fromer, Amir Globerson
- Estimating image bases for visual image reconstruction from human brain activity Yusuke Fujiwara, Yoichi Miyawaki, Yukiyasu Kamitani
- Graph-based Consensus Maximization among Multiple Supervised and Unsupervised Models Jing Gao, Feng Liang, Wei Fan, Yizhou Sun, Jiawei Han
- Lattice Regression Eric Garcia, Maya Gupta
- From PAC-Bayes Bounds to KL Regularization Pascal Germain, Alexandre Lacasse, Mario Marchand, Sara Shanian, François Laviolette
- Perceptual Multistability as Markov Chain Monte Carlo Inference Samuel Gershman, Ed Vul, Joshua B. Tenenbaum
- A joint maximum-entropy model for binary neural population patterns and continuous signals Sebastian Gerwinn, Philipp Berens, Matthias Bethge
- A Biologically Plausible Model for Rapid Natural Scene Identification Sennay Ghebreab, Steven Scholte, Victor Lamme, Arnold Smeulders
- A Gaussian Tree Approximation for Integer Least-Squares Jacob Goldberger, Amir Leshem
- Measuring Invariances in Deep Networks Ian Goodfellow, Honglak Lee, Quoc V. Le, Andrew Saxe, Andrew Y. Ng
- Region-based Segmentation and Object Detection Stephen Gould, Tianshi Gao, Daphne Koller
- Posterior vs Parameter Sparsity in Latent Variable Models Kuzman Ganchev, Ben Taskar, Fernando Pereira, João Gama
- A Fast, Consistent Kernel Two-Sample Test Arthur Gretton, Kenji Fukumizu, Zaïd Harchaoui, Bharath K. Sriperumbudur
- Non-stationary continuous dynamic Bayesian networks Marco Grzegorczyk, Dirk Husmeier
- Label Selection on Graphs Andrew Guillory, Jeff A. Bilmes
- Beyond Convexity: Online Submodular Minimization Elad Hazan, Satyen Kale
- On Stochastic and Worst-case Models for Investing Elad Hazan, Satyen Kale
- Robust Nonparametric Regression with Metric-Space Valued Output Matthias Hein
- Hierarchical Learning of Dimensional Biases in Human Categorization Adam Sanborn, Nick Chater, Katherine A. Heller
- Bayesian Sparse Factor Models and DAGs Inference and Comparison Ricardo Henao, Ole Winther
- Sparse and Locally Constant Gaussian Graphical Models Jean Honorio, Dimitris Samaras, Nikos Paragios, Rita Goldstein, Luis E. Ortiz
- Differential Use of Implicit Negative Evidence in Generative and Discriminative Language Learning Anne Hsu, Thomas L. Griffiths
- Periodic Step Size Adaptation for Single Pass On-line Learning Chun-nan Hsu, Yu-ming Chang, Hanshen Huang, Yuh-jye Lee
- Multi-Label Prediction via Compressed Sensing John Langford, Tong Zhang, Daniel J. Hsu, Sham M. Kakade
- Accelerated Gradient Methods for Stochastic Optimization and Online Learning Chonghai Hu, Weike Pan, James T. Kwok
- Reconstruction of Sparse Circuits Using Multi-neuronal Excitation (RESCUME) Tao Hu, Anthony Leonardo, Dmitri B. Chklovskii
- Riffled Independence for Ranked Data Jonathan Huang, Carlos Guestrin
- Learning Brain Connectivity of Alzheimer's Disease from Neuroimaging Data Shuai Huang, Jing Li, Liang Sun, Jun Liu, Teresa Wu, Kewei Chen, Adam Fleisher, Eric Reiman, Jieping Ye
- Discrete MDL Predicts in Total Variation Marcus Hutter
- Particle-based Variational Inference for Continuous Systems Andrew Frank, Padhraic Smyth, Alexander T. Ihler
- Modeling Social Annotation Data with Content Relevance using a Topic Model Tomoharu Iwata, Takeshi Yamada, Naonori Ueda
- On the Algorithmics and Applications of a Mixed-norm based Kernel Learning Formulation Saketha N. Jagarlapudi, Dinesh G, Raman S, Chiranjib Bhattacharyya, Aharon Ben-tal, Ramakrishnan K.r.
- Bayesian Belief Polarization Alan Jern, Kai-min Chang, Charles Kemp
- Regularized Distance Metric Learning:Theory and Algorithm Rong Jin, Shijun Wang, Yang Zhou
- Local Rules for Global MAP: When Do They Work ? Kyomin Jung, Pushmeet Kohli, Devavrat Shah
- Potential-Based Agnostic Boosting Varun Kanade, Adam Kalai
- Directed Regression Yi-hao Kao, Benjamin V. Roy, Xiang Yan
- Breaking Boundaries Between Induction Time and Diagnosis Time Active Information Acquisition Ashish Kapoor, Eric Horvitz
- Multiple Incremental Decremental Learning of Support Vector Machines Masayuki Karasuyama, Ichiro Takeuchi
- Submodularity Cuts and Applications Yoshinobu Kawahara, Kiyohito Nagano, Koji Tsuda, Jeff A. Bilmes
- Individuation, Identification and Object Discovery Charles Kemp, Alan Jern, Fei Xu
- Abstraction and Relational learning Charles Kemp, Alan Jern
- Quantification and the language of thought Charles Kemp
- Matrix Completion from Noisy Entries Raghunandan Keshavan, Andrea Montanari, Sewoong Oh
- Unsupervised Detection of Regions of Interest Using Iterative Link Analysis Gunhee Kim, Antonio Torralba
- Clustering sequence sets for motif discovery Jong K. Kim, Seungjin Choi
- Semi-supervised Regression using Hessian energy with an application to semi-supervised dimensionality reduction Kwang I. Kim, Florian Steinke, Matthias Hein
- Replacing supervised classification learning by Slow Feature Analysis in spiking neural networks Stefan Klampfl, Wolfgang Maass
- Efficient and Accurate Lp-Norm Multiple Kernel Learning Marius Kloft, Ulf Brefeld, Pavel Laskov, Klaus-Robert Müller, Alexander Zien, Sören Sonnenburg
- Sparsistent Learning of Varying-coefficient Models with Structural Changes Mladen Kolar, Le Song, Eric P. Xing
- Skill Discovery in Continuous Reinforcement Learning Domains using Skill Chaining George Konidaris, Andre S. Barreto
- Fast, smooth and adaptive regression in metric spaces Samory Kpotufe
- Fast Image Deconvolution using Hyper-Laplacian Priors Dilip Krishnan, Rob Fergus
- Learning to Hash with Binary Reconstructive Embeddings Brian Kulis, Trevor Darrell
- Learning a Small Mixture of Trees M. P. Kumar, Daphne Koller
- Ensemble Nystrom Method Sanjiv Kumar, Mehryar Mohri, Ameet Talwalkar
- Occlusive Components Analysis Jörg Lücke, Richard Turner, Maneesh Sahani, Marc Henniges
- Monte Carlo Sampling for Regret Minimization in Extensive Games Marc Lanctot, Kevin Waugh, Martin Zinkevich, Michael Bowling
- Inter-domain Gaussian Processes for Sparse Inference using Inducing Features Anibal Figueiras-vidal, Miguel Lázaro-Gredilla
- Unsupervised feature learning for audio classification using convolutional deep belief networks Honglak Lee, Peter Pham, Yan Largman, Andrew Y. Ng
- Functional network reorganization in motor cortex can be explained by reward-modulated Hebbian learning Steven Chase, Andrew Schwartz, Wolfgang Maass, Robert A. Legenstein
- An Integer Projected Fixed Point Method for Graph Matching and MAP Inference Marius Leordeanu, Martial Hebert, Rahul Sukthankar
- Probabilistic Relational PCA Wu-jun Li, Dit-Yan Yeung, Zhihua Zhang
- Asymptotically Optimal Regularization in Smooth Parametric Models Percy S. Liang, Guillaume Bouchard, Francis R. Bach, Michael I. Jordan
- Nonparametric Greedy Algorithms for the Sparse Learning Problem Han Liu, Xi Chen
- Grouped Orthogonal Matching Pursuit for Variable Selection and Prediction Grzegorz Swirszcz, Naoki Abe, Aurelie C. Lozano
- Modeling the spacing effect in sequential category learning Hongjing Lu, Matthew Weiden, Alan L. Yuille
- Who’s Doing What: Joint Modeling of Names and Verbs for Simultaneous Face and Pose Annotation Jie Luo, Barbara Caputo, Vittorio Ferrari
- Variational Gaussian-process factor analysis for modeling spatio-temporal data Jaakko Luttinen, Alexander Ilin
- Solving Stochastic Games Liam M. Dermed, Charles L. Isbell
- Bayesian estimation of orientation preference maps Sebastian Gerwinn, Leonard White, Matthias Kaschube, Matthias Bethge, Jakob H. Macke
- Convergent Temporal-Difference Learning with Arbitrary Smooth Function Approximation Shalabh Bhatnagar, Doina Precup, David Silver, Richard S. Sutton, Hamid R. Maei, Csaba Szepesvári
- Compressed Least-Squares Regression Odalric Maillard, Rémi Munos
- Beyond Categories: The Visual Memex Model for Reasoning About Object Relationships Tomasz Malisiewicz, Alyosha Efros
- Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models Ryan Mcdonald, Mehryar Mohri, Nathan Silberman, Dan Walker, Gideon S. Mann
- Toward Provably Correct Feature Selection in Arbitrary Domains Dimitris Margaritis
- FACTORIE: Probabilistic Programming via Imperatively Defined Factor Graphs Andrew McCallum, Karl Schultz, Sameer Singh
- Matrix Completion from Power-Law Distributed Samples Raghu Meka, Prateek Jain, Inderjit S. Dhillon
- Extending Phase Mechanism to Differential Motion Opponency for Motion Pop-out Yicong Meng, Bertram E. Shi
- Nonparametric Latent Feature Models for Link Prediction Kurt Miller, Michael I. Jordan, Thomas L. Griffiths
- Accelerating Bayesian Structural Inference for Non-Decomposable Gaussian Graphical Models Baback Moghaddam, Emtiyaz Khan, Kevin P. Murphy, Benjamin M. Marlin
- Large Scale Nonparametric Bayesian Inference: Data Parallelisation in the Indian Buffet Process Finale Doshi-velez, Shakir Mohamed, Zoubin Ghahramani, David A. Knowles
- Which graphical models are difficult to learn? Andrea Montanari, Jose A. Pereira
- A Generalized Natural Actor-Critic Algorithm Tetsuro Morimura, Eiji Uchibe, Junichiro Yoshimoto, Kenji Doya
- Predicting the Optimal Spacing of Study: A Multiscale Context Model of Memory Harold Pashler, Nicholas Cepeda, Robert V. Lindsey, Ed Vul, Michael C. Mozer
- Statistical Analysis of Semi-Supervised Learning: The Limit of Infinite Unlabelled Data Boaz Nadler, Nathan Srebro, Xueyuan Zhou
- 3D Object Recognition with Deep Belief Nets Vinod Nair, Geoffrey E. Hinton
- A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers Sahand Negahban, Bin Yu, Martin J. Wainwright, Pradeep K. Ravikumar
- STDP enables spiking neurons to detect hidden causes of their inputs Bernhard Nessler, Michael Pfeiffer, Wolfgang Maass
- Noisy Generalized Binary Search Robert Nowak
- Submanifold density estimation Arkadas Ozakin, Alexander G. Gray
- Correlation Coefficients are Insufficient for Analyzing Spike Count Dependencies Arno Onken, Steffen Grünewälder, Klaus Obermayer
- Construction of Nonparametric Bayesian Models from Parametric Bayes Equations Peter Orbanz
- Learning from Neighboring Strokes: Combining Appearance and Context for Multi-Domain Sketch Recognition Tom Ouyang, Randall Davis
- Zero-shot Learning with Semantic Output Codes Mark Palatucci, Dean Pomerleau, Geoffrey E. Hinton, Tom M. Mitchell
- Conditional Neural Fields Jian Peng, Liefeng Bo, Jinbo Xu
- Free energy score space Alessandro Perina, Marco Cristani, Umberto Castellani, Vittorio Murino, Nebojsa Jojic
- Maximum likelihood trajectories for continuous-time Markov chains Theodore J. Perkins
- Robust Value Function Approximation Using Bilinear Programming Marek Petrik, Shlomo Zilberstein
- Exponential Family Graph Matching and Ranking James Petterson, Jin Yu, Julian J. Mcauley, Tibério S. Caetano
- Know Thy Neighbour: A Normative Theory of Synaptic Depression Jean-pascal Pfister, Peter Dayan, Máté Lengyel
- Time-rescaling methods for the estimation and assessment of non-Poisson neural encoding models Jonathan W. Pillow
- Bilinear classifiers for visual recognition Hamed Pirsiavash, Deva Ramanan, Charless C. Fowlkes
- Convex Relaxation of Mixture Regression with Efficient Algorithms Novi Quadrianto, John Lim, Dale Schuurmans, Tibério S. Caetano
- Distribution Matching for Transduction Novi Quadrianto, James Petterson, Alex J. Smola
- Locality-sensitive binary codes from shift-invariant kernels Maxim Raginsky, Svetlana Lazebnik
- Multi-Label Prediction via Sparse Infinite CCA Piyush Rai, Hal Daume
- Linear-time Algorithms for Pairwise Statistical Problems Parikshit Ram, Dongryeol Lee, William March, Alexander G. Gray
- Rank-Approximate Nearest Neighbor Search: Retaining Meaning and Speed in High Dimensions Parikshit Ram, Dongryeol Lee, Hua Ouyang, Alexander G. Gray
- Asymptotic Analysis of MAP Estimation via the Replica Method and Compressed Sensing Sundeep Rangan, Vivek Goyal, Alyson K. Fletcher
- Spatial Normalized Gamma Processes Vinayak Rao, Yee W. Teh
- Lower bounds on minimax rates for nonparametric regression with additive sparsity and smoothness Garvesh Raskutti, Bin Yu, Martin J. Wainwright
- A Game-Theoretic Approach to Hypergraph Clustering Samuel R. Bulò, Marcello Pelillo
- Segmenting Scenes by Matching Image Composites Bryan Russell, Alyosha Efros, Josef Sivic, Bill Freeman, Andrew Zisserman
- Filtering Abstract Senses From Image Search Results Kate Saenko, Trevor Darrell
- Learning in Markov Random Fields using Tempered Transitions Ruslan R. Salakhutdinov
- Replicated Softmax: an Undirected Topic Model Geoffrey E. Hinton, Ruslan R. Salakhutdinov
- Learning models of object structure Joseph Schlecht, Kobus Barnard
- Linearly constrained Bayesian matrix factorization for blind source separation Mikkel Schmidt
- Speeding up Magnetic Resonance Image Acquisition by Bayesian Multi-Slice Adaptive Compressed Sensing Matthias Seeger
- Improving Existing Fault Recovery Policies Guy Shani, Christopher Meek
- Positive Semidefinite Metric Learning with Boosting Chunhua Shen, Junae Kim, Lei Wang, Anton Hengel
- Fast subtree kernels on graphs Nino Shervashidze, Karsten M. Borgwardt
- Neural Implementation of Hierarchical Bayesian Inference by Importance Sampling Lei Shi, Thomas L. Griffiths
- Learning Label Embeddings for Nearest-Neighbor Multi-class Classification with an Application to Speech Recognition Natasha Singh-miller, Michael Collins
- Semi-supervised Learning using Sparse Eigenfunction Bases Kaushik Sinha, Mikhail Belkin
- Hierarchical Modeling of Local Image Features through L_p-Nested Symmetric Distributions Matthias Bethge, Eero P. Simoncelli, Fabian H. Sinz
- A Sparse Non-Parametric Approach for Single Channel Separation of Known Sounds Paris Smaragdis, Madhusudana Shashanka, Bhiksha Raj
- A Bayesian Analysis of Dynamics in Free Recall Richard Socher, Samuel Gershman, Per Sederberg, Kenneth Norman, Adler J. Perotte, David M. Blei
- Kernels and learning curves for Gaussian process regression on random graphs Peter Sollich, Matthew Urry, Camille Coti
- Time-Varying Dynamic Bayesian Networks Le Song, Mladen Kolar, Eric P. Xing
- Code-specific policy gradient rules for spiking neurons Henning Sprekeler, Guillaume Hennequin, Wulfram Gerstner
- Kernel Choice and Classifiability for RKHS Embeddings of Probability Distributions Kenji Fukumizu, Arthur Gretton, Gert R. Lanckriet, Bernhard Schölkopf, Bharath K. Sriperumbudur
- On the Convergence of the Concave-Convex Procedure Gert R. Lanckriet, Bharath K. Sriperumbudur
- Fast Learning from Non-i.i.d. Observations Ingo Steinwart, Andreas Christmann
- Structural inference affects depth perception in the context of potential occlusion Ian Stevenson, Konrad Koerding
- The Wisdom of Crowds in the Recollection of Order Information Mark Steyvers, Brent Miller, Pernille Hemmer, Michael D. Lee
- Online Learning of Assignments Matthew Streeter, Daniel Golovin, Andreas Krause
- Entropic Graph Regularization in Non-Parametric Semi-Supervised Classification Amarnag Subramanya, Jeff A. Bilmes
- Efficient Recovery of Jointly Sparse Vectors Liang Sun, Jun Liu, Jianhui Chen, Jieping Ye
- Modelling Relational Data using Bayesian Clustered Tensor Factorization Ilya Sutskever, Joshua B. Tenenbaum, Ruslan R. Salakhutdinov
- Adapting to the Shifting Intent of Search Queries Umar Syed, Aleksandrs Slivkins, Nina Mishra
- Indian Buffet Processes with Power-law Behavior Yee W. Teh, Dilan Gorur
- Nonlinear directed acyclic structure learning with weakly additive noise models Arthur Gretton, Peter Spirtes, Robert E. Tillman
- Compositionality of optimal control laws Emanuel Todorov
- Maximin affinity learning of image segmentation Kevin Briggman, Winfried Denk, Sebastian Seung, Moritz N. Helmstaedter, Srinivas C. Turaga
- Help or Hinder: Bayesian Models of Social Goal Inference Tomer Ullman, Chris Baker, Owen Macindoe, Owain Evans, Noah Goodman, Joshua B. Tenenbaum
- Learning to Rank by Optimizing NDCG Measure Hamed Valizadegan, Rong Jin, Ruofei Zhang, Jianchang Mao
- Streaming Pointwise Mutual Information Benjamin V. Durme, Ashwin Lall
- Bayesian Source Localization with the Multivariate Laplace Prior Marcel V. Gerven, Botond Cseke, Robert Oostenveld, Tom Heskes
- Gaussian process regression with Student-t likelihood Jarno Vanhatalo, Pasi Jylänki, Aki Vehtari
- Measuring model complexity with the prior predictive Wolf Vanpaemel
- Structured output regression for detection with partial truncation Andrea Vedaldi, Andrew Zisserman
- Bootstrapping from Game Tree Search Joel Veness, David Silver, Alan Blair, William Uther
- Tracking Dynamic Sources of Malicious Activity at Internet Scale Shobha Venkataraman, Avrim Blum, Dawn Song, Subhabrata Sen, Oliver Spatscheck
- Explaining human multiple object tracking as resource-constrained approximate inference in a dynamic probabilistic model Ed Vul, George Alvarez, Joshua B. Tenenbaum, Michael J. Black
- Fast Graph Laplacian Regularized Kernel Learning via Semidefinite–Quadratic–Linear Programming Xiao-ming Wu, Anthony M. So, Zhenguo Li, Shuo-yen R. Li
- Rethinking LDA: Why Priors Matter Hanna M. Wallach, David M. Mimno, Andrew McCallum
- Decoupling Sparsity and Smoothness in the Discrete Hierarchical Dirichlet Process Chong Wang, David M. Blei
- Variational Inference for the Nested Chinese Restaurant Process Chong Wang, David M. Blei
- Sufficient Conditions for Agnostic Active Learnable Liwei Wang
- A Rate Distortion Approach for Semi-Supervised Conditional Random Fields Yang Wang, Gholamreza Haffari, Shaojun Wang, Greg Mori
- Graph Zeta Function in the Bethe Free Energy and Loopy Belief Propagation Yusuke Watanabe, Kenji Fukumizu
- Strategy Grafting in Extensive Games Kevin Waugh, Nolan Bard, Michael Bowling
- Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R. Movellan, Paul L. Ruvolo
- Training Factor Graphs with Reinforcement Learning for Efficient MAP Inference Khashayar Rohanimanesh, Sameer Singh, Andrew McCallum, Michael J. Black
- Sequential effects reflect parallel learning of multiple environmental regularities Matthew Wilder, Matt Jones, Michael C. Mozer
- A Neural Implementation of the Kalman Filter Robert Wilson, Leif Finkel
- Sparse Estimation Using General Likelihoods and Non-Factorial Priors David P. Wipf, Srikantan S. Nagarajan
- Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, Yi Ma
- Learning Bregman Distance Functions and Its Application for Semi-Supervised Clustering Lei Wu, Rong Jin, Steven C. Hoi, Jianke Zhu, Nenghai Yu
- Statistical Consistency of Top-k Ranking Fen Xia, Tie-yan Liu, Hang Li
- Boosting with Spatial Regularization Yongxin Xi, Uri Hasson, Peter J. Ramadge, Zhen J. Xiang
- Dual Averaging Method for Regularized Stochastic Learning and Online Optimization Lin Xiao
- Adaptive Regularization for Transductive Support Vector Machine Zenglin Xu, Rong Jin, Jianke Zhu, Irwin King, Michael Lyu, Zhirong Yang
- Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units Feng Yan, Ningyi Xu, Yuan Qi
- Dirichlet-Bernoulli Alignment: A Generative Model for Multi-Class Multi-Label Multi-Instance Corpora Shuang-hong Yang, Hongyuan Zha, Bao-gang Hu
- Heterogeneous multitask learning with joint sparsity constraints Xiaolin Yang, Seyoung Kim, Eric P. Xing
- Noise Characterization, Modeling, and Reduction for In Vivo Neural Recording Zhi Yang, Qi Zhao, Edward Keefer, Wentai Liu
- Heavy-Tailed Symmetric Stochastic Neighbor Embedding Zhirong Yang, Irwin King, Zenglin Xu, Erkki Oja
- Hierarchical Mixture of Classification Experts Uncovers Interactions between Brain Regions Bangpeng Yao, Dirk Walther, Diane Beck, Li Fei-fei
- Multi-Step Dyna Planning for Policy Evaluation and Control Hengshuai Yao, Shalabh Bhatnagar, Dongcui Diao, Richard S. Sutton, Csaba Szepesvári
- Conditional Random Fields with High-Order Features for Sequence Labeling Nan Ye, Wee S. Lee, Hai L. Chieu, Dan Wu
- Analysis of SVM with Indefinite Kernels Yiming Ying, Colin Campbell, Mark Girolami
- Sparse Metric Learning via Smooth Optimization Yiming Ying, Kaizhu Huang, Colin Campbell
- Nonlinear Learning using Local Coordinate Coding Kai Yu, Tong Zhang, Yihong Gong
- A General Projection Property for Distribution Families Yao-liang Yu, Yuxi Li, Dale Schuurmans, Csaba Szepesvári
- Optimal Scoring for Unsupervised Learning Zhihua Zhang, Guang Dai
- Anomaly Detection with Score functions based on Nearest Neighbor Graphs Manqi Zhao, Venkatesh Saligrama
- DUOL: A Double Updating Approach for Online Learning Peilin Zhao, Steven C. Hoi, Rong Jin
- Optimizing Multi-Class Spatio-Spectral Filters via Bayes Error Estimation for EEG Classification Wenming Zheng, Zhouchen Lin
- Efficient Moments-based Permutation Tests Chunxiao Zhou, Huixia J. Wang, Yongmei M. Wang
- Canonical Time Warping for Alignment of Human Behavior Feng Zhou, Fernando Torre
- Non-Parametric Bayesian Dictionary Learning for Sparse Image Representations Mingyuan Zhou, Haojun Chen, Lu Ren, Guillermo Sapiro, Lawrence Carin, John W. Paisley
- Thresholding Procedures for High Dimensional Variable Selection and Statistical Estimation Shuheng Zhou
- Nonparametric Bayesian Texture Learning and Synthesis Long Zhu, Yuanahao Chen, Bill Freeman, Antonio Torralba
- Human Rademacher Complexity Xiaojin Zhu, Bryan R. Gibson, Timothy T. Rogers
- Slow Learners are Fast Martin Zinkevich, John Langford, Alex J. Smola
- The 'tree-dependent components' of natural scenes are edge filters Daniel Zoran, Yair Weiss