Advances in Neural Information Processing Systems 13 (NIPS 2000)
The papers below appear in Advances in Neural Information Processing Systems 13 edited by T.K. Leen and T.G. Dietterich and V. Tresp.They are proceedings from the conference, "Neural Information Processing Systems 2000."
- Who Does What? A Novel Algorithm to Determine Function Localization Ranit Aharonov-Barki, Isaac Meilijson, Eytan Ruppin
- A Productive, Systematic Framework for the Representation of Visual Structure Shimon Edelman, Nathan Intrator
- The Interplay of Symbolic and Subsymbolic Processes in Anagram Problem Solving David B. Grimes, Michael C. Mozer
- Hippocampally-Dependent Consolidation in a Hierarchical Model of Neocortex Szabolcs Káli, Peter Dayan
- Position Variance, Recurrence and Perceptual Learning Zhaoping Li, Peter Dayan
- The Use of MDL to Select among Computational Models of Cognition In Jae Myung, Mark A. Pitt, Shaobo Zhang, Vijay Balasubramanian
- Active Inference in Concept Learning Jonathan D. Nelson, Javier R. Movellan
- The Early Word Catches the Weights Mark A. Smith, Garrison W. Cottrell, Karen L. Anderson
- Structure Learning in Human Causal Induction Joshua B. Tenenbaum, Thomas L. Griffiths
- Adaptive Object Representation with Hierarchically-Distributed Memory Sites Bosco S. Tjan
- What Can a Single Neuron Compute? Blaise Agüera y Arcas, Adrienne L. Fairhall, William Bialek
- Dendritic Compartmentalization Could Underlie Competition and Attentional Biasing of Simultaneous Visual Stimuli Kevin A. Archie, Bartlett W. Mel
- Place Cells and Spatial Navigation Based on 2D Visual Feature Extraction, Path Integration, and Reinforcement Learning Angelo Arleo, Fabrizio Smeraldi, Stéphane Hug, Wulfram Gerstner
- Modelling Spatial Recall, Mental Imagery and Neglect Suzanna Becker, Neil Burgess
- Stability and Noise in Biochemical Switches William Bialek
- Temporally Dependent Plasticity: An Information Theoretic Account Gal Chechik, Naftali Tishby
- A New Model of Spatial Representation in Multimodal Brain Areas Sophie Denève, Jean-René Duhamel, Alexandre Pouget
- Multiple Timescales of Adaptation in a Neural Code Adrienne L. Fairhall, Geoffrey D. Lewen, William Bialek, Robert R. de Ruyter van Steveninck
- Dopamine Bonuses Sham Kakade, Peter Dayan
- Finding the Key to a Synapse Thomas Natschläger, Wolfgang Maass
- Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics Thomas Natschläger, Wolfgang Maass, Eduardo D. Sontag, Anthony M. Zador
- Spike-Timing-Dependent Learning for Oscillatory Networks Silvia Scarpetta, Zhaoping Li, John A. Hertz
- Universality and Individuality in a Neural Code Elad Schneidman, Naama Brenner, Naftali Tishby, Robert R. de Ruyter van Steveninck, William Bialek
- Natural Sound Statistics and Divisive Normalization in the Auditory System Odelia Schwartz, Eero P. Simoncelli
- Whence Sparseness? Carl van Vreeswijk
- Efficient Learning of Linear Perceptrons Shai Ben-David, Hans-Ulrich Simon
- Algorithmic Stability and Generalization Performance Olivier Bousquet, André Elisseeff
- Competition and Arbors in Ocular Dominance Peter Dayan
- From Margin to Sparsity Thore Graepel, Ralf Herbrich, Robert C. Williamson
- Permitted and Forbidden Sets in Symmetric Threshold-Linear Networks Richard H. R. Hahnloser, H. Sebastian Seung
- A PAC-Bayesian Margin Bound for Linear Classifiers: Why SVMs work Ralf Herbrich, Thore Graepel
- On Reversing Jensen's Inequality Tony Jebara, Alex Pentland
- Second Order Approximations for Probability Models Hilbert J. Kappen, Wim Wiegerinck
- Some New Bounds on the Generalization Error of Combined Classifiers Vladimir Koltchinskii, Dmitriy Panchenko, Fernando Lozano
- Sparsity of Data Representation of Optimal Kernel Machine and Leave-one-out Estimator Adam Kowalczyk
- Foundations for a Circuit Complexity Theory of Sensory Processing Robert A. Legenstein, Wolfgang Maass
- A Tighter Bound for Graphical Models Martijn A. R. Leisink, Hilbert J. Kappen
- Learning Curves for Gaussian Processes Regression: A Framework for Good Approximations Dörthe Malzahn, Manfred Opper
- Weak Learners and Improved Rates of Convergence in Boosting Shie Mannor, Ron Meir
- Learning Continuous Distributions: Simulations With Field Theoretic Priors Ilya Nemenman, William Bialek
- Occam's Razor Carl Edward Rasmussen, Zoubin Ghahramani
- The Kernel Trick for Distances Bernhard Schölkopf
- Regularization with Dot-Product Kernels Alex J. Smola, Zoltán L. Óvári, Robert C. Williamson
- Analysis of Bit Error Probability of Direct-Sequence CDMA Multiuser Demodulators Toshiyuki Tanaka
- Error-correcting Codes on a Bethe-like Lattice Renato Vicente, David Saad, Yoshiyuki Kabashima
- Algebraic Information Geometry for Learning Machines with Singularities Sumio Watanabe
- Computing with Finite and Infinite Networks Ole Winther
- Stagewise Processing in Error-correcting Codes and Image Restoration K. Y. Michael Wong, Hidetoshi Nishimori
- Learning Winner-take-all Competition Between Groups of Neurons in Lateral Inhibitory Networks Xiaohui Xie, Richard H. R. Hahnloser, H. Sebastian Seung
- Convergence of Large Margin Separable Linear Classification Tong Zhang
- A Support Vector Method for Clustering Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik
- A Variational Mean-Field Theory for Sigmoidal Belief Networks Chiranjib Bhattacharyya, S. Sathiya Keerthi
- Direct Classification with Indirect Data Timothy X. Brown
- Model Complexity, Goodness of Fit and Diminishing Returns Igor V. Cadez, Padhraic Smyth
- A Linear Programming Approach to Novelty Detection Colin Campbell, Kristin P. Bennett
- Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping Rich Caruana, Steve Lawrence, C. Lee Giles
- Incremental and Decremental Support Vector Machine Learning Gert Cauwenberghs, Tomaso Poggio
- Vicinal Risk Minimization Olivier Chapelle, Jason Weston, Léon Bottou, Vladimir Vapnik
- Gaussianization Scott Saobing Chen, Ramesh A. Gopinath
- The Missing Link - A Probabilistic Model of Document Content and Hypertext Connectivity David A. Cohn, Thomas Hofmann
- Improved Output Coding for Classification Using Continuous Relaxation Koby Crammer, Yoram Singer
- Sparse Representation for Gaussian Process Models Lehel Csató, Manfred Opper
- Explaining Away in Weight Space Peter Dayan, Sham Kakade
- An Adaptive Metric Machine for Pattern Classification Carlotta Domeniconi, Jing Peng, Dimitrios Gunopulos
- High-temperature Expansions for Learning Models of Nonnegative Data Oliver B. Downs
- Incorporating Second-Order Functional Knowledge for Better Option Pricing Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, René Garcia
- Discovering Hidden Variables: A Structure-Based Approach Gal Elidan, Noam Lotner, Nir Friedman, Daphne Koller
- Accumulator Networks: Suitors of Local Probability Propagation Brendan J. Frey, Anitha Kannan
- Sequentially Fitting ``Inclusive'' Trees for Inference in Noisy-OR Networks Brendan J. Frey, Relu Patrascu, Tommi Jaakkola, Jodi Moran
- A New Approximate Maximal Margin Classification Algorithm Claudio Gentile
- Propagation Algorithms for Variational Bayesian Learning Zoubin Ghahramani, Matthew J. Beal
- The Kernel Gibbs Sampler Thore Graepel, Ralf Herbrich
- `N-Body' Problems in Statistical Learning Alexander G. Gray, Andrew W. Moore
- Large Scale Bayes Point Machines Ralf Herbrich, Thore Graepel
- Beyond Maximum Likelihood and Density Estimation: A Sample-Based Criterion for Unsupervised Learning of Complex Models Sepp Hochreiter, Michael C. Mozer
- Ensemble Learning and Linear Response Theory for ICA Pedro A. d. F. R. Højen-Sørensen, Ole Winther, Lars Kai Hansen
- Generalizable Singular Value Decomposition for Ill-posed Datasets Ulrik Kjems, Lars Kai Hansen, Stephen C. Strother
- Algorithms for Non-negative Matrix Factorization Daniel D. Lee, H. Sebastian Seung
- Text Classification using String Kernels Huma Lodhi, John Shawe-Taylor, Nello Cristianini, Christopher J. C. H. Watkins
- Constrained Independent Component Analysis Wei Lu, Jagath C. Rajapakse
- Active Support Vector Machine Classification Olvi L. Mangasarian, David R. Musicant
- The Unscented Particle Filter Rudolph van der Merwe, Arnaud Doucet, Nando de Freitas, Eric A. Wan
- A Mathematical Programming Approach to the Kernel Fisher Algorithm Sebastian Mika, Gunnar Rätsch, Klaus-Robert Müller
- Automatic Choice of Dimensionality for PCA Thomas P. Minka
- On Iterative Krylov-Dogleg Trust-Region Steps for Solving Neural Networks Nonlinear Least Squares Problems Eiji Mizutani, James Demmel
- An Information Maximization Approach to Overcomplete and Recurrent Representations Oren Shriki, Haim Sompolinsky, Daniel D. Lee
- Sparse Greedy Gaussian Process Regression Alex J. Smola, Peter L. Bartlett
- Kernel Expansions with Unlabeled Examples Martin Szummer, Tommi Jaakkola
- Sparse Kernel Principal Component Analysis Michael E. Tipping
- Data Clustering by Markovian Relaxation and the Information Bottleneck Method Naftali Tishby, Noam Slonim
- Active Learning for Parameter Estimation in Bayesian Networks Simon Tong, Daphne Koller
- Mixtures of Gaussian Processes Volker Tresp
- Tree-Based Modeling and Estimation of Gaussian Processes on Graphs with Cycles Martin J. Wainwright, Erik B. Sudderth, Alan S. Willsky
- Feature Selection for SVMs Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil, Tomaso Poggio, Vladimir Vapnik
- On a Connection between Kernel PCA and Metric Multidimensional Scaling Christopher K. I. Williams
- Using the Nyström Method to Speed Up Kernel Machines Christopher K. I. Williams, Matthias Seeger
- Generalized Belief Propagation Jonathan S. Yedidia, William T. Freeman, Yair Weiss
- A Gradient-Based Boosting Algorithm for Regression Problems Richard S. Zemel, Toniann Pitassi
- Regularized Winnow Methods Tong Zhang
- A Silicon Primitive for Competitive Learning David Hsu, Miguel Figueroa, Chris Diorio
- Smart Vision Chip Fabricated Using Three Dimensional Integration Technology Hiroyuki Kurino, M. Nakagawa, Kang Wook Lee, Tomonori Nakamura, Yuusuke Yamada, Ki Tae Park, Mitsumasa Koyanagi
- Homeostasis in a Silicon Integrate and Fire Neuron Shih-Chii Liu, Bradley A. Minch
- Fast Training of Support Vector Classifiers Fernando Pérez-Cruz, Pedro Luis Alarcón-Diana, Angel Navia-Vázquez, Antonio Artés-Rodríguez
- Four-legged Walking Gait Control Using a Neuromorphic Chip Interfaced to a Support Vector Learning Algorithm Susanne Still, Bernhard Schölkopf, Klaus Hepp, Rodney J. Douglas
- New Approaches Towards Robust and Adaptive Speech Recognition Hervé Bourlard, Samy Bengio, Katrin Weber
- Speech Denoising and Dereverberation Using Probabilistic Models Hagai Attias, John C. Platt, Alex Acero, Li Deng
- Combining ICA and Top-Down Attention for Robust Speech Recognition Un-Min Bae, Soo-Young Lee
- Learning Joint Statistical Models for Audio-Visual Fusion and Segregation John W. Fisher III, Trevor Darrell, William T. Freeman, Paul A. Viola
- Factored Semi-Tied Covariance Matrices Mark J. F. Gales
- Higher-Order Statistical Properties Arising from the Non-Stationarity of Natural Signals Lucas C. Parra, Clay Spence, Paul Sajda
- One Microphone Source Separation Sam T. Roweis
- Minimum Bayes Error Feature Selection for Continuous Speech Recognition George Saon, Mukund Padmanabhan
- Periodic Component Analysis: An Eigenvalue Method for Representing Periodic Structure in Speech Lawrence K. Saul, Jont B. Allen
- FaceSync: A Linear Operator for Measuring Synchronization of Video Facial Images and Audio Tracks Malcolm Slaney, Michele Covell
- Noise Suppression Based on Neurophysiologically-motivated SNR Estimation for Robust Speech Recognition Jürgen Tchorz, Michael Kleinschmidt, Birger Kollmeier
- Shape Context: A New Descriptor for Shape Matching and Object Recognition Serge Belongie, Jitendra Malik, Jan Puzicha
- Emergence of Movement Sensitive Neurons' Properties by Learning a Sparse Code for Natural Moving Images Rafal Bogacz, Malcolm W. Brown, Christophe G. Giraud-Carrier
- The Manhattan World Assumption: Regularities in Scene Statistics which Enable Bayesian Inference James M. Coughlan, Alan L. Yuille
- Feature Correspondence: A Markov Chain Monte Carlo Approach Frank Dellaert, Steven M. Seitz, Sebastian Thrun, Charles E. Thorpe
- Keeping Flexible Active Contours on Track using Metropolis Updates Trausti T. Kristjansson, Brendan J. Frey
- Color Opponency Constitutes a Sparse Representation for the Chromatic Structure of Natural Scenes Te-Won Lee, Thomas Wachtler, Terrence J. Sejnowski
- Learning Segmentation by Random Walks Marina Meila, Jianbo Shi
- Partially Observable SDE Models for Image Sequence Recognition Tasks Javier R. Movellan, Paul Mineiro, Ruth J. Williams
- Learning Sparse Image Codes using a Wavelet Pyramid Architecture Bruno A. Olshausen, Phil Sallee, Michael S. Lewicki
- Learning and Tracking Cyclic Human Motion Dirk Ormoneit, Hedvig Sidenbladh, Michael J. Black, Trevor Hastie
- Redundancy and Dimensionality Reduction in Sparse-Distributed Representations of Natural Objects in Terms of Their Local Features Penio S. Penev
- Rate-coded Restricted Boltzmann Machines for Face Recognition Yee Whye Teh, Geoffrey E. Hinton
- Divisive and Subtractive Mask Effects: Linking Psychophysics and Biophysics Barbara Zenger, Christof Koch
- From Mixtures of Mixtures to Adaptive Transform Coding Cynthia Archer, Todd K. Leen
- A Neural Probabilistic Language Model Yoshua Bengio, Réjean Ducharme, Pascal Vincent
- A Comparison of Image Processing Techniques for Visual Speech Recognition Applications Michael S. Gray, Terrence J. Sejnowski, Javier R. Movellan
- Support Vector Novelty Detection Applied to Jet Engine Vibration Spectra Paul M. Hayton, Bernhard Schölkopf, Lionel Tarassenko, Paul Anuzis
- Recognizing Hand-written Digits Using Hierarchical Products of Experts Guy Mayraz, Geoffrey E. Hinton
- Sex with Support Vector Machines Baback Moghaddam, Ming-Hsuan Yang
- Probabilistic Semantic Video Indexing Milind R. Naphade, Igor Kozintsev, Thomas S. Huang
- Interactive Parts Model: An Application to Recognition of On-line Cursive Script Predrag Neskovic, Philip C. Davis, Leon N. Cooper
- Learning Switching Linear Models of Human Motion Vladimir Pavlovic, James M. Rehg, John MacCormick
- Bayes Networks on Ice: Robotic Search for Antarctic Meteorites Liam Pedersen, Dimitrios Apostolopoulos, William Whittaker
- The Use of Classifiers in Sequential Inference Vasin Punyakanok, Dan Roth
- Machine Learning for Video-Based Rendering Arno Schödl, Irfan A. Essa
- Bayesian Video Shot Segmentation Nuno Vasconcelos, Andrew Lippman
- Programmable Reinforcement Learning Agents David Andre, Stuart J. Russell
- Exact Solutions to Time-Dependent MDPs Justin A. Boyan, Michael L. Littman
- Decomposition of Reinforcement Learning for Admission Control of Self-Similar Call Arrival Processes Jakob Carlström
- Reinforcement Learning with Function Approximation Converges to a Region Geoffrey J. Gordon
- Hierarchical Memory-Based Reinforcement Learning Natalia Hernandez-Gardiol, Sridhar Mahadevan
- Automated State Abstraction for Options using the U-Tree Algorithm Anders Jonsson, Andrew G. Barto
- Robust Reinforcement Learning Jun Morimoto, Kenji Doya
- Kernel-Based Reinforcement Learning in Average-Cost Problems: An Application to Optimal Portfolio Choice Dirk Ormoneit, Peter W. Glynn
- Using Free Energies to Represent Q-values in a Multiagent Reinforcement Learning Task Brian Sallans, Geoffrey E. Hinton
- Balancing Multiple Sources of Reward in Reinforcement Learning Christian R. Shelton
- APRICODD: Approximate Policy Construction Using Decision Diagrams Robert St-Aubin, Jesse Hoey, Craig Boutilier