Advances in Neural Information Processing Systems 12 (NIPS 1999)
The papers below appear in Advances in Neural Information Processing Systems 12 edited by S.A. Solla and T.K. Leen and K. Müller.They are proceedings from the conference, "Neural Information Processing Systems 1999."
- Recognizing Evoked Potentials in a Virtual Environment Jessica D. Bayliss, Dana H. Ballard
- A Neurodynamical Approach to Visual Attention Gustavo Deco, Josef Zihl
- Effects of Spatial and Temporal Contiguity on the Acquisition of Spatial Information Thea B. Ghiselli-Crippa, Paul W. Munro
- Acquisition in Autoshaping Sham Kakade, Peter Dayan
- Robust Recognition of Noisy and Superimposed Patterns via Selective Attention Soo-Young Lee, Michael C. Mozer
- Perceptual Organization Based on Temporal Dynamics Xiuwen Liu, DeLiang L. Wang
- Information Factorization in Connectionist Models of Perception Javier R. Movellan, James L. McClelland
- Graded Grammaticality in Prediction Fractal Machines Shan Parfitt, Peter Tiño, Georg Dorffner
- Rules and Similarity in Concept Learning Joshua B. Tenenbaum
- Evolving Learnable Languages Bradley Tonkes, Alan Blair, Janet Wiles
- Learning Statistically Neutral Tasks without Expert Guidance Ton Weijters, Antal van den Bosch, Eric O. Postma
- A Generative Model for Attractor Dynamics Richard S. Zemel, Michael C. Mozer
- Recurrent Cortical Competition: Strengthen or Weaken? Péter Adorján, Lars Schwabe, Christian Piepenbrock, Klaus Obermayer
- Effective Learning Requires Neuronal Remodeling of Hebbian Synapses Gal Chechik, Isaac Meilijson, Eytan Ruppin
- Wiring Optimization in the Brain Dmitri B. Chklovskii, Charles F. Stevens
- Optimal Sizes of Dendritic and Axonal Arbors Dmitri B. Chklovskii
- Neural Representation of Multi-Dimensional Stimuli Christian W. Eurich, Stefan D. Wilke, Helmut Schwegler
- Spiking Boltzmann Machines Geoffrey E. Hinton, Andrew D. Brown
- Distributed Synchrony of Spiking Neurons in a Hebbian Cell Assembly David Horn, Nir Levy, Isaac Meilijson, Eytan Ruppin
- Can VI Mechanisms Account for Figure-Ground and Medial Axis Effects? Zhaoping Li
- Channel Noise in Excitable Neural Membranes Amit Manwani, Peter N. Steinmetz, Christof Koch
- LTD Facilitates Learning in a Noisy Environment Paul W. Munro, Gerardina Hernández
- Memory Capacity of Linear vs. Nonlinear Models of Dendritic Integration Panayiota Poirazi, Bartlett W. Mel
- Predictive Sequence Learning in Recurrent Neocortical Circuits Rajesh P. N. Rao, Terrence J. Sejnowski
- A Recurrent Model of the Interaction Between Prefrontal and Inferotemporal Cortex in Delay Tasks Alfonso Renart, Néstor Parga, Edmund T. Rolls
- Information Capacity and Robustness of Stochastic Neuron Models Elad Schneidman, Idan Segev, Naftali Tishby
- An MEG Study of Response Latency and Variability in the Human Visual System During a Visual-Motor Integration Task Akaysha C. Tang, Barak A. Pearlmutter, Tim A. Hely, Michael Zibulevsky, Michael P. Weisend
- Population Decoding Based on an Unfaithful Model Si Wu, Hiroyuki Nakahara, Noboru Murata, Shun-ichi Amari
- Spike-based Learning Rules and Stabilization of Persistent Neural Activity Xiaohui Xie, H. Sebastian Seung
- A Variational Baysian Framework for Graphical Models Hagai Attias
- Model Selection in Clustering by Uniform Convergence Bounds Joachim M. Buhmann, Marcus Held
- Uniqueness of the SVM Solution Christopher J. C. Burges, David J. Crisp
- Model Selection for Support Vector Machines Olivier Chapelle, Vladimir Vapnik
- Dynamics of Supervised Learning with Restricted Training Sets and Noisy Teachers Anthony C. C. Coolen, C. W. H. Mace
- A Geometric Interpretation of v-SVM Classifiers David J. Crisp, Christopher J. C. Burges
- Efficient Approaches to Gaussian Process Classification Lehel Csató, Ernest Fokoué, Manfred Opper, Bernhard Schottky, Ole Winther
- Potential Boosters? Nigel Duffy, David P. Helmbold
- Bayesian Averaging is Well-Temperated Lars Kai Hansen
- Regular and Irregular Gallager-zype Error-Correcting Codes Yoshiyuki Kabashima, Tatsuto Murayama, David Saad, Renato Vicente
- Mixture Density Estimation Jonathan Q. Li, Andrew R. Barron
- Statistical Dynamics of Batch Learning Song Li, K. Y. Michael Wong
- Neural Computation with Winner-Take-All as the Only Nonlinear Operation Wolfgang Maass
- Boosting with Multi-Way Branching in Decision Trees Yishay Mansour, David A. McAllester
- Inference for the Generalization Error Claude Nadeau, Yoshua Bengio
- Resonance in a Stochastic Neuron Model with Delayed Interaction Toru Ohira, Yuzuru Sato, Jack D. Cowan
- Understanding Stepwise Generalization of Support Vector Machines: a Toy Model Sebastian Risau-Gusman, Mirta B. Gordon
- Lower Bounds on the Complexity of Approximating Continuous Functions by Sigmoidal Neural Networks Michael Schmitt
- Noisy Neural Networks and Generalizations Hava T. Siegelmann, Alexander Roitershtein, Asa Ben-Hur
- The Entropy Regularization Information Criterion Alex J. Smola, John Shawe-Taylor, Bernhard Schölkopf, Robert C. Williamson
- Probabilistic Methods for Support Vector Machines Peter Sollich
- Algebraic Analysis for Non-regular Learning Machines Sumio Watanabe
- Semiparametric Approach to Multichannel Blind Deconvolution of Nonminimum Phase Systems Liqing Zhang, Shun-ichi Amari, Andrzej Cichocki
- Some Theoretical Results Concerning the Convergence of Compositions of Regularized Linear Functions Tong Zhang
- Robust Full Bayesian Methods for Neural Networks Christophe Andrieu, João F. G. de Freitas, Arnaud Doucet
- Independent Factor Analysis with Temporally Structured Sources Hagai Attias
- Gaussian Fields for Approximate Inference in Layered Sigmoid Belief Networks David Barber, Peter Sollich
- Modeling High-Dimensional Discrete Data with Multi-Layer Neural Networks Yoshua Bengio, Samy Bengio
- Robust Neural Network Regression for Offline and Online Learning Thomas Briegel, Volker Tresp
- Reconstruction of Sequential Data with Probabilistic Models and Continuity Constraints Miguel Á. Carreira-Perpiñán
- Transductive Inference for Estimating Values of Functions Olivier Chapelle, Vladimir Vapnik, Jason Weston
- The Nonnegative Boltzmann Machine Oliver B. Downs, David J. C. MacKay, Daniel D. Lee
- Differentiating Functions of the Jacobian with Respect to the Weights Gary William Flake, Barak A. Pearlmutter
- Local Probability Propagation for Factor Analysis Brendan J. Frey
- Variational Inference for Bayesian Mixtures of Factor Analysers Zoubin Ghahramani, Matthew J. Beal
- Bayesian Transduction Thore Graepel, Ralf Herbrich, Klaus Obermayer
- Learning to Parse Images Geoffrey E. Hinton, Zoubin Ghahramani, Yee Whye Teh
- Maximum Entropy Discrimination Tommi Jaakkola, Marina Meila, Tony Jebara
- Topographic Transformation as a Discrete Latent Variable Nebojsa Jojic, Brendan J. Frey
- An Improved Decomposition Algorithm for Regression Support Vector Machines Pavel Laskov
- Algorithms for Independent Components Analysis and Higher Order Statistics Daniel D. Lee, Uri Rokni, Haim Sompolinsky
- The Relaxed Online Maximum Margin Algorithm Yi Li, Philip M. Long
- Bayesian Network Induction via Local Neighborhoods Dimitris Margaritis, Sebastian Thrun
- Boosting Algorithms as Gradient Descent Llew Mason, Jonathan Baxter, Peter L. Bartlett, Marcus R. Frean
- A Multi-class Linear Learning Algorithm Related to Winnow Chris Mesterharm
- Invariant Feature Extraction and Classification in Kernel Spaces Sebastian Mika, Gunnar Rätsch, Jason Weston, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller
- Approximate Inference A lgorithms for Two-Layer Bayesian Networks Andrew Y. Ng, Michael I. Jordan
- Optimal Kernel Shapes for Local Linear Regression Dirk Ormoneit, Trevor Hastie
- Large Margin DAGs for Multiclass Classification John C. Platt, Nello Cristianini, John Shawe-Taylor
- The Infinite Gaussian Mixture Model Carl Edward Rasmussen
- v-Arc: Ensemble Learning in the Presence of Outliers Gunnar Rätsch, Bernhard Schölkopf, Alex J. Smola, Klaus-Robert Müller, Takashi Onoda, Sebastian Mika
- Nonlinear Discriminant Analysis Using Kernel Functions Volker Roth, Volker Steinhage
- An Analysis of Turbo Decoding with Gaussian Densities Paat Rusmevichientong, Benjamin Van Roy
- Support Vector Method for Novelty Detection Bernhard Schölkopf, Robert C. Williamson, Alex J. Smola, John Shawe-Taylor, John C. Platt
- Better Generative Models for Sequential Data Problems: Bidirectional Recurrent Mixture Density Networks Mike Schuster
- Greedy Importance Sampling Dale Schuurmans
- Bayesian Model Selection for Support Vector Machines, Gaussian Processes and Other Kernel Classifiers Matthias Seeger
- Leveraged Vector Machines Yoram Singer
- Agglomerative Information Bottleneck Noam Slonim, Naftali Tishby
- Training Data Selection for Optimal Generalization in Trigonometric Polynomial Networks Masashi Sugiyama, Hidemitsu Ogawa
- Predictive App roaches for Choosing Hyperparameters in Gaussian Processes S. Sundararajan, S. Sathiya Keerthi
- On Input Selection with Reversible Jump Markov Chain Monte Carlo Sampling Peter Sykacek
- Building Predictive Models from Fractal Representations of Symbolic Sequences Peter Tiño, Georg Dorffner
- The Relevance Vector Machine Michael E. Tipping
- Support Vector Method for Multivariate Density Estimation Vladimir Vapnik, Sayan Mukherjee
- Dual Estimation and the Unscented Transformation Eric A. Wan, Rudolph van der Merwe, Alex T. Nelson
- Correctness of Belief Propagation in Gaussian Graphical Models of Arbitrary Topology Yair Weiss, William T. Freeman
- A MCMC Approach to Hierarchical Mixture Modelling Christopher K. I. Williams
- Data Visualization and Feature Selection: New Algorithms for Nongaussian Data Howard Hua Yang, John Moody
- Manifold Stochastic Dynamics for Bayesian Learning Mark Zlochin, Yoram Baram
- The Parallel Problems Server: an Interactive Tool for Large Scale Machine Learning Charles Lee Isbell Jr., Parry Husbands
- An Oculo-Motor System with Multi-Chip Neuromorphic Analog VLSI Control Oliver Landolt, Steve Gyger
- A Winner-Take-All Circuit with Controllable Soft Max Property Shih-Chii Liu
- A Neuromorphic VLSI System for Modeling the Neural Control of Axial Locomotion Girish N. Patel, Edgar A. Brown, Stephen P. DeWeerth
- Bifurcation Analysis of a Silicon Neuron Girish N. Patel, Gennady S. Cymbalyuk, Ronald L. Calabrese, Stephen P. DeWeerth
- An Analog VLSI Model of Periodicity Extraction André van Schaik
- An Oscillatory Correlation Frame work for Computational Auditory Scene Analysis Guy J. Brown, DeLiang L. Wang
- Bayesian Modelling of fMRI lime Series Pedro A. d. F. R. Højen-Sørensen, Lars Kai Hansen, Carl Edward Rasmussen
- Neural System Model of Human Sound Localization Craig T. Jin, Simon Carlile
- Spectral Cues in Human Sound Localization Craig T. Jin, Anna Corderoy, Simon Carlile, André van Schaik
- Broadband Direction-Of-Arrival Estimation Based on Second Order Statistics Justinian P. Rosca, Joseph Ó Ruanaidh, Alexander Jourjine, Scott Rickard
- Constrained Hidden Markov Models Sam T. Roweis
- Online Independent Component Analysis with Local Learning Rate Adaptation Nicol N. Schraudolph, Xavier Giannakopoulos
- Speech Modelling Using Subspace and EM Techniques Gavin Smith, João F. G. de Freitas, Tony Robinson, Mahesan Niranjan
- Search for Information Bearing Components in Speech Howard Hua Yang, Hynek Hermansky
- Audio Vision: Using Audio-Visual Synchrony to Locate Sounds John R. Hershey, Javier R. Movellan
- Bayesian Reconstruction of 3D Human Motion from Single-Camera Video Nicholas R. Howe, Michael E. Leventon, William T. Freeman
- Emergence of Topography and Complex Cell Properties from Natural Images using Extensions of ICA Aapo Hyvärinen, Patrik O. Hoyer
- An Information-Theoretic Framework for Understanding Saccadic Eye Movements Tai Sing Lee, Stella X. Yu
- Learning Sparse Codes with a Mixture-of-Gaussians Prior Bruno A. Olshausen, K. Jarrod Millman
- Hierarchical Image Probability (H1P) Models Clay Spence, Lucas C. Parra
- Scale Mixtures of Gaussians and the Statistics of Natural Images Martin J. Wainwright, Eero P. Simoncelli
- A SNoW-Based Face Detector Ming-Hsuan Yang, Dan Roth, Narendra Ahuja
- Managing Uncertainty in Cue Combination Zhiyong Yang, Richard S. Zemel
- Robust Learning of Chaotic Attractors Rembrandt Bakker, Jaap C. Schouten, Marc-Olivier Coppens, Floris Takens, C. Lee Giles, Cor M. van den Bleek
- Image Representations for Facial Expression Coding Marian Stewart Bartlett, Gianluca Donato, Javier R. Movellan, Joseph C. Hager, Paul Ekman, Terrence J. Sejnowski
- Low Power Wireless Communication via Reinforcement Learning Timothy X. Brown
- Learning Informative Statistics: A Nonparametnic Approach John W. Fisher III, Alexander T. Ihler, Paul A. Viola
- Kirchoff Law Markov Fields for Analog Circuit Design Richard M. Golden
- Learning the Similarity of Documents: An Information-Geometric Approach to Document Retrieval and Categorization Thomas Hofmann
- Constructing Heterogeneous Committees Using Input Feature Grouping: Application to Economic Forecasting Yuansong Liao, John E. Moody
- From Coexpression to Coregulation: An Approach to Inferring Transcriptional Regulation among Gene Classes from Large-Scale Expression Data Eric Mjolsness, Tobias Mann, Rebecca Castaño, Barbara J. Wold
- Churn Reduction in the Wireless Industry Michael C. Mozer, Richard H. Wolniewicz, David B. Grimes, Eric Johnson, Howard Kaushansky
- Unmixing Hyperspectral Data Lucas C. Parra, Clay Spence, Paul Sajda, Andreas Ziehe, Klaus-Robert Müller
- Application of Blind Separation of Sources to Optical Recording of Brain Activity Holger Schoner, Martin Stetter, Ingo Schießl, John E. W. Mayhew, Jennifer S. Lund, Niall McLoughlin, Klaus Obermayer
- Reinforcement Learning for Spoken Dialogue Systems Satinder P. Singh, Michael J. Kearns, Diane J. Litman, Marilyn A. Walker
- Image Recognition in Context: Application to Microscopic Urinalysis Xubo B. Song, Joseph Sill, Yaser S. Abu-Mostafa, Harvey Kasdan
- Generalized Model Selection for Unsupervised Learning in High Dimensions Shivakumar Vaithyanathan, Byron Dom
- Learning from User Feedback in Image Retrieval Systems Nuno Vasconcelos, Andrew Lippman
- An Environment Model for Nonstationary Reinforcement Learning Samuel P. M. Choi, Dit-Yan Yeung, Nevin Lianwen Zhang
- State Abstraction in MAXQ Hierarchical Reinforcement Learning Thomas G. Dietterich
- Approximate Planning in Large POMDPs via Reusable Trajectories Michael J. Kearns, Yishay Mansour, Andrew Y. Ng
- Actor-Critic Algorithms Vijay R. Konda, John N. Tsitsiklis
- Bayesian Map Learning in Dynamic Environments Kevin P. Murphy
- Policy Search via Density Estimation Andrew Y. Ng, Ronald Parr, Daphne Koller
- Neural Network Based Model Predictive Control Stephen Piche, James D. Keeler, Greg Martin, Gene Boe, Doug Johnson, Mark Gerules
- Reinforcement Learning Using Approximate Belief States Andres C. Rodriguez, Ronald Parr, Daphne Koller
- Coastal Navigation with Mobile Robots Nicholas Roy, Sebastian Thrun
- Learning Factored Representations for Partially Observable Markov Decision Processes Brian Sallans
- Policy Gradient Methods for Reinforcement Learning with Function Approximation Richard S. Sutton, David A. McAllester, Satinder P. Singh, Yishay Mansour
- Monte Carlo POMDPs Sebastian Thrun