Advances in Neural Information Processing Systems 10 (NIPS 1997)
The papers below appear in Advances in Neural Information Processing Systems 10 edited by M.I. Jordan and M.J. Kearns and S.A. Solla.They are proceedings from the conference, "Neural Information Processing Systems 1997."
- Synchronized Auditory and Cognitive 40 Hz Attentional Streams, and the Impact of Rhythmic Expectation on Auditory Scene Analysis Bill Baird
- On Parallel versus Serial Processing: A Computational Study of Visual Search Eyal Cohen, Eytan Ruppin
- Task and Spatial Frequency Effects on Face Specialization Matthew N. Dailey, Garrison W. Cottrell
- Neural Basis of Object-Centered Representations Sophie Denève, Alexandre Pouget
- A Neural Network Model of Naive Preference and Filial Imprinting in the Domestic Chick Lucy E. Hadden
- Adaptation in Speech Motor Control John F. Houde, Michael I. Jordan
- Learning Human-like Knowledge by Singular Value Decomposition: A Progress Report Thomas K. Landauer, Darrell Laham, Peter W. Foltz
- Multi-modular Associative Memory Nir Levy, David Horn, Eytan Ruppin
- Serial Order in Reading Aloud: Connectionist Models and Neighborhood Structure Jeanne C. Milostan, Garrison W. Cottrell
- A Superadditive-Impairment Theory of Optic Aphasia Michael C. Mozer, Mark Sitton, Martha J. Farah
- A Hippocampal Model of Recognition Memory Randall C. O'Reilly, Kenneth A. Norman, James L. McClelland
- Correlates of Attention in a Model of Dynamic Visual Recognition Rajesh P. N. Rao
- Recurrent Neural Networks Can Learn to Implement Symbol-Sensitive Counting Paul Rodriguez, Janet Wiles
- Comparison of Human and Machine Word Recognition Markus Schenkel, Cyril Latimer, Marwan A. Jabri
- Coding of Naturalistic Stimuli by Auditory Midbrain Neurons Hagai Attias, Christoph E. Schreiner
- Refractoriness and Neural Precision Michael J. Berry II, Markus Meister
- Statistical Models of Conditioning Peter Dayan, Theresa Long
- Characterizing Neurons in the Primary Auditory Cortex of the Awake Primate Using Reverse Correlation R. Christopher DeCharms, Michael Merzenich
- Using Helmholtz Machines to Analyze Multi-channel Neuronal Recordings Virginia R. de Sa, R. Christopher DeCharms, Michael Merzenich
- Instabilities in Eye Movement Control: A Model of Periodic Alternating Nystagmus Ernst R. Dow, Thomas J. Anastasio
- Hippocampal Model of Rat Spatial Abilities Using Temporal Difference Learning David J. Foster, Richard G. M. Morris, Peter Dayan
- Gradients for Retinotectal Mapping Geoffrey J. Goodhill
- A Mathematical Model of Axon Guidance by Diffusible Factors Geoffrey J. Goodhill
- Computing with Action Potentials John J. Hopfield, Carlos D. Brody, Sam Roweis
- A Model of Early Visual Processing Laurent Itti, Jochen Braun, Dale K. Lee, Christof Koch
- Perturbative M-Sequences for Auditory Systems Identification Mark Kvale, Christoph E. Schreiner
- Effects of Spike Timing Underlying Binocular Integration and Rivalry in a Neural Model of Early Visual Cortex Erik D. Lumer
- Dynamic Stochastic Synapses as Computational Units Wolfgang Maass, Anthony M. Zador
- Synaptic Transmission: An Information-Theoretic Perspective Amit Manwani, Christof Koch
- Toward a Single-Cell Account for Binocular Disparity Tuning: An Energy Model May Be Hiding in Your Dendrites Bartlett W. Mel, Daniel L. Ruderman, Kevin A. Archie
- Just One View: Invariances in Inferotemporal Cell Tuning Maximilian Riesenhuber, Tomaso Poggio
- On the Separation of Signals from Neighboring Cells in Tetrode Recordings Maneesh Sahani, John S. Pezaris, Richard A. Andersen
- Independent Component Analysis for Identification of Artifacts in Magnetoencephalographic Recordings Ricardo Vigário, Veikko Jousmäki, Matti Hämäläinen, Riitta Hari, Erkki Oja
- Modeling Complex Cells in an Awake Macaque during Natural Image Viewing William E. Vinje, Jack L. Gallant
- The Canonical Distortion Measure in Feature Space and 1-NN Classification Jonathan Baxter, Peter L. Bartlett
- Multiple Threshold Neural Logic Vasken Bohossian, Jehoshua Bruck
- Generalization in Decision Trees and DNF: Does Size Matter? Mostefa Golea, Peter L. Bartlett, Wee Sun Lee, Llew Mason
- Selecting Weighting Factors in Logarithmic Opinion Pools Tom Heskes
- New Approximations of Differential Entropy for Independent Component Analysis and Projection Pursuit Aapo Hyvärinen
- Boltzmann Machine Learning Using Mean Field Theory and Linear Response Correction Hilbert J. Kappen, Francisco de Borja Rodríguez Ortiz
- Relative Loss Bounds for Multidimensional Regression Problems Jyrki Kivinen, Manfred K. Warmuth
- Asymptotic Theory for Regularization: One-Dimensional Linear Case Petri Koistinen
- Two Approaches to Optimal Annealing Todd K. Leen, Bernhard Schottky, David Saad
- Structural Risk Minimization for Nonparametric Time Series Prediction Ron Meir
- Analytical Study of the Interplay between Architecture and Predictability Avner Priel, Ido Kanter, David A. Kessler
- Globally Optimal On-line Learning Rules Magnus Rattray, David Saad
- Minimax and Hamiltonian Dynamics of Excitatory-Inhibitory Networks H. Sebastian Seung, Tom J. Richardson, J. C. Lagarias, John J. Hopfield
- Data-Dependent Structural Risk Minimization for Perceptron Decision Trees John Shawe-Taylor, Nello Cristianini
- From Regularization Operators to Support Vector Kernels Alex J. Smola, Bernhard Schölkopf
- The Rectified Gaussian Distribution Nicholas D. Socci, Daniel D. Lee, H. Sebastian Seung
- On-line Learning from Finite Training Sets in Nonlinear Networks Peter Sollich, David Barber
- Competitive On-line Linear Regression Volodya Vovk
- On the Infeasibility of Training Neural Networks with Small Squared Errors Van H. Vu
- The Storage Capacity of a Fully-Connected Committee Machine Yuansheng Xiong, Chulan Kwon, Jong-Hoon Oh
- The Efficiency and the Robustness of Natural Gradient Descent Learning Rule Howard Hua Yang, Shun-ichi Amari
- Ensemble Learning for Multi-Layer Networks David Barber, Christopher M. Bishop
- Radial Basis Functions: A Bayesian Treatment David Barber, Bernhard Schottky
- Shared Context Probabilistic Transducers Yoshua Bengio, Samy Bengio, Jean-Franc Isabelle, Yoram Singer
- Approximating Posterior Distributions in Belief Networks Using Mixtures Christopher M. Bishop, Neil D. Lawrence, Tommi Jaakkola, Michael I. Jordan
- Receptive Field Formation in Natural Scene Environments: Comparison of Single Cell Learning Rules Brian S. Blais, Nathan Intrator, Harel Z. Shouval, Leon N. Cooper
- An Annealed Self-Organizing Map for Source Channel Coding Matthias Burger, Thore Graepel, Klaus Obermayer
- Incorporating Test Inputs into Learning Zehra Cataltepe, Malik Magdon-Ismail
- On Efficient Heuristic Ranking of Hypotheses Steve A. Chien, Andre Stechert, Darren Mutz
- Learning to Order Things William W. Cohen, Robert E. Schapire, Yoram Singer
- Regularisation in Sequential Learning Algorithms João F. G. de Freitas, Mahesan Niranjan, Andrew H. Gee
- Agnostic Classification of Markovian Sequences Ran El-Yaniv, Shai Fine, Naftali Tishby
- Ensemble and Modular Approaches for Face Detection: A Comparison Raphaël Feraud, Olivier Bernier
- A Revolution: Belief Propagation in Graphs with Cycles Brendan J. Frey, David J. C. MacKay
- Hierarchical Non-linear Factor Analysis and Topographic Maps Zoubin Ghahramani, Geoffrey E. Hinton
- Regression with Input-dependent Noise: A Gaussian Process Treatment Paul W. Goldberg, Christopher K. I. Williams, Christopher M. Bishop
- Linear Concepts and Hidden Variables: An Empirical Study Adam J. Grove, Dan Roth
- Classification by Pairwise Coupling Trevor Hastie, Robert Tibshirani
- Unsupervised On-line Learning of Decision Trees for Hierarchical Data Analysis Marcus Held, Joachim M. Buhmann
- Nonlinear Markov Networks for Continuous Variables Reimar Hofmann, Volker Tresp
- Active Data Clustering Thomas Hofmann, Joachim M. Buhmann
- Function Approximation with the Sweeping Hinge Algorithm Don R. Hush, Fernando Lozano, Bill G. Horne
- The Error Coding and Substitution PaCTs Gareth James, Trevor Hastie
- S-Map: A Network with a Simple Self-Organization Algorithm for Generative Topographic Mappings Kimmo Kiviluoto, Erkki Oja
- Learning Nonlinear Overcomplete Representations for Efficient Coding Michael S. Lewicki, Terrence J. Sejnowski
- Factorizing Multivariate Function Classes Juan K. Lin
- A Framework for Multiple-Instance Learning Oded Maron, Tomás Lozano-Pérez
- An Application of Reversible-Jump MCMC to Multivariate Spherical Gaussian Mixtures Alan D. Marrs
- Estimating Dependency Structure as a Hidden Variable Marina Meila, Michael I. Jordan
- Combining Classifiers Using Correspondence Analysis Christopher J. Merz
- Learning Path Distributions Using Nonequilibrium Diffusion Networks Paul Mineiro, Javier R. Movellan, Ruth J. Williams
- Learning Generative Models with the Up Propagation Algorithm Jong-Hoon Oh, H. Sebastian Seung
- An Incremental Nearest Neighbor Algorithm with Queries Joel Ratsaby
- RCC Cannot Compute Certain FSA, Even with Arbitrary Transfer Functions Mark Ring
- EM Algorithms for PCA and SPCA Sam T. Roweis
- Local Dimensionality Reduction Stefan Schaal, Sethu Vijayakumar, Christopher G. Atkeson
- Prior Knowledge in Support Vector Kernels Bernhard Schölkopf, Patrice Simard, Alex J. Smola, Vladimir Vapnik
- Training Methods for Adaptive Boosting of Neural Networks Holger Schwenk, Yoshua Bengio
- Learning Continuous Attractors in Recurrent Networks H. Sebastian Seung
- Monotonic Networks Joseph Sill
- Stacked Density Estimation Padhraic Smyth, David Wolpert
- Bidirectional Retrieval from Associative Memory Friedrich T. Sommer, Günther Palm
- Mapping a Manifold of Perceptual Observations Joshua B. Tenenbaum
- Graph Matching with Hierarchical Discrete Relaxation Richard C. Wilson, Edwin R. Hancock
- Multiplicative Updating Rule for Blind Separation Derived from the Method of Scoring Howard Hua Yang
- A 1, 000-Neuron System with One Million 7-bit Physical Interconnections Yuzo Hirai
- Silicon Retina with Adaptive Filtering Properties Shih-Chii Liu
- Analog VLSI Model of Intersegmental Coordination with Nearest-Neighbor Coupling Girish N. Patel, Jeremy H. Holleman, Stephen P. DeWeerth
- An Analog VLSI Neural Network for Phase-based Machine Vision Bertram Emil Shi, Kwok Fai Hui
- Analysis of Drifting Dynamics with Neural Network Hidden Markov Models Jens Kohlmorgen, Klaus-Robert Müller, Klaus Pawelzik
- Bayesian Robustification for Audio Visual Fusion Javier R. Movellan, Paul Mineiro
- Modeling Acoustic Correlations by Factor Analysis Lawrence K. Saul, Mazin G. Rahim
- Blind Separation of Radio Signals in Fading Channels Kari Torkkola
- Hybrid NN/HMM-Based Speech Recognition with a Discriminant Neural Feature Extraction Daniel Willett, Gerhard Rigoll
- A Non-Parametric Multi-Scale Statistical Model for Natural Images Jeremy S. De Bonet, Paul A. Viola
- Recovering Perspective Pose with a Dual Step EM Algorithm Andrew D. J. Cross, Edwin R. Hancock
- Bayesian Model of Surface Perception William T. Freeman, Paul A. Viola
- Features as Sufficient Statistics Davi Geiger, Archisman Rudra, Laurance T. Maloney
- Detection of First and Second Order Motion Alexander Grunewald, Heiko Neumann
- A Simple and Fast Neural Network Approach to Stereovision Rolf D. Henkel
- Visual Navigation in a Robot Using Zig-Zag Behavior M. Anthony Lewis
- 2D Observers for Human 3D Object Recognition? Zili Liu, Daniel Kersten
- Self-similarity Properties of Natural Images Antonio Turiel, Germán Mato, Néstor Parga, Jean-Pierre Nadal
- Multiresolution Tangent Distance for Affine-invariant Classification Nuno Vasconcelos, Andrew Lippman
- Phase Transitions and the Perceptual Organization of Video Sequences Yair Weiss
- Using Expectation to Guide Processing: A Study of Three Real-World Applications Shumeet Baluja
- Structure Driven Image Database Retrieval Jeremy S. De Bonet, Paul A. Viola
- A General Purpose Image Processing Chip: Orientation Detection Ralph Etienne-Cummings, Donghui Cai
- An Analog VLSI Model of the Fly Elementary Motion Detector Reid R. Harrison, Christof Koch
- MELONET I: Neural Nets for Inventing Baroque-Style Chorale Variations Dominik Hörnel
- Extended ICA Removes Artifacts from Electroencephalographic Recordings Tzyy-Ping Jung, Colin Humphries, Te-Won Lee, Scott Makeig, Martin J. McKeown, Vicente Iragui, Terrence J. Sejnowski
- A Generic Approach for Identification of Event Related Brain Potentials via a Competitive Neural Network Structure Daniel H. Lange, Hava T. Siegelmann, Hillel Pratt, Gideon F. Inbar
- A Neural Network Based Head Tracking System Daniel D. Lee, H. S. Seung
- Wavelet Models for Video Time-Series Sheng Ma, Chuanyi Ji
- Reinforcement Learning for Call Admission Control and Routing in Integrated Service Networks Peter Marbach, Oliver Mihatsch, Miriam Schulte, John N. Tsitsiklis
- Learning to Schedule Straight-Line Code J. Eliot B. Moss, Paul E. Utgoff, John Cavazos, Doina Precup, Darko Stefanovic, Carla E. Brodley, David Scheeff
- Enhancing Q-Learning for Optimal Asset Allocation Ralph Neuneier
- Intrusion Detection with Neural Networks Jake Ryan, Meng-Jang Lin, Risto Miikkulainen
- Incorporating Contextual Information in White Blood Cell Identification Xubo B. Song, Yaser S. Abu-Mostafa, Joseph Sill, Harvey Kasdan
- Bach in a Box - Real-Time Harmony Randall R. Spangler, Rodney M. Goodman, Jim Hawkins
- Experiences with Bayesian Learning in a Real World Application Peter Sykacek, Georg Dorffner, Peter Rappelsberger, Josef Zeitlhofer
- A Solution for Missing Data in Recurrent Neural Networks with an Application to Blood Glucose Prediction Volker Tresp, Thomas Briegel
- Use of a Multi-Layer Perceptron to Predict Malignancy in Ovarian Tumors Herman Verrelst, Yves Moreau, Joos Vandewalle, Dirk Timmerman
- Modelling Seasonality and Trends in Daily Rainfall Data Peter M. Williams
- The Observer-Observation Dilemma in Neuro-Forecasting Hans-Georg Zimmermann, Ralph Neuneier
- Generalized Prioritized Sweeping David Andre, Nir Friedman, Ronald Parr
- Nonparametric Model-Based Reinforcement Learning Christopher G. Atkeson
- An Improved Policy Iteration Algorithm for Partially Observable MDPs Eric A. Hansen
- Automated Aircraft Recovery via Reinforcement Learning: Initial Experiments Jeffrey F. Monaco, David G. Ward, Andrew G. Barto
- Reinforcement Learning for Continuous Stochastic Control Problems Rémi Munos, Paul Bourgine
- Adaptive Choice of Grid and Time in Reinforcement Learning Stephan Pareigis
- Reinforcement Learning with Hierarchies of Machines Ronald Parr, Stuart J. Russell
- Multi-time Models for Temporally Abstract Planning Doina Precup, Richard S. Sutton
- How to Dynamically Merge Markov Decision Processes Satinder P. Singh, David Cohn
- The Asymptotic Convergence-Rate of Q-learning Csaba Szepesvári
- Hybrid Reinforcement Learning and Its Application to Biped Robot Control Satoshi Yamada, Akira Watanabe, Michio Nakashima